Aspirin-Responsive, Migraine-Like Transient Cerebral and Ocular Ischemic Attacks and Erythromelalgia in JAK2V617F-Positive Essential Thrombocythemia and Polycythemia Vera

2014 ◽  
Vol 133 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Jan Jacques Michiels ◽  
Zwi Berneman ◽  
Alain Gadisseur ◽  
King H. Lam ◽  
Hendrik De Raeve ◽  
...  

Migraine-like cerebral transient ischemic attacks (MIAs) and ocular ischemic manifestations were the main presenting features in 10 JAK2V617F-positive patients studied, with essential thrombocythemia (ET) in 6 and polycythemia vera (PV) in 4. Symptoms varied and included cerebral ischemic attacks, mental concentration disturbances followed by throbbing headaches, nausea, vomiting, syncope or even seizures. MIAs were frequently preceded or followed by ocular ischemic events of blurred vision, scotomas, transient flashing of the eyes, and sudden transient partial blindness preceded or followed erythromelalgia in the toes or fingers. The time lapse between the first symptoms of aspirin-responsive MIAs and the diagnosis of ET in 5 patients ranged from 4 to 12 years. At the time of erythromelalgia and MIAs, shortened platelet survival, an increase in the levels of the platelet activation markers β-thromboglobulin and platelet factor 4 and also in urinary thromboxane B2 were clearly indicative of the spontaneous in vivo platelet activation of constitutively JAK2V617F-activated thrombocythemic platelets. Aspirin relieves the peripheral, cerebral and ocular ischemic disturbances by irreversible inhibition of platelet cyclo-oxygenase (COX-1) activity and aggregation ex vivo. Vitamin K antagonist, dipyridamole, ticlopidine, sulfinpyrazone and sodium salicylate have no effect on platelet COX-1 activity and are ineffective in the treatment of thrombocythemia-specific manifestations of erythromelalgia and atypical MIAs. If not treated with aspirin, ET and PV patients are at a high risk of major arterial thrombosis including stroke, myocardial infarction and digital gangrene.

2004 ◽  
Vol 79 (3) ◽  
pp. 253-259 ◽  
Author(s):  
Marina Karakantza ◽  
Nikolaos C. Giannakoulas ◽  
Panagiotis Zikos ◽  
George Sakellaropoulos ◽  
Alexandra Kouraklis ◽  
...  

2013 ◽  
Vol 110 (08) ◽  
pp. 349-357 ◽  
Author(s):  
Barbara Belfiori ◽  
Eleonora Petito ◽  
Giuseppe Guglielmini ◽  
Lisa Malincarne ◽  
AnnaMaria Mezzasoma ◽  
...  

SummaryAbacavir (ABC) has been associated with ischaemic cardiovascular events in HIV-infected patients, but the pathogenic mechanisms are unknown. Aim of our study was to assess whether ABC induces in vivo platelet activation and ex vivo platelet hyper-reactivity. In a retrospective, case-control study, in vivo platelet activation markers were measured in 69 HIV-infected patients, before starting therapy and after 6–12 months of either ABC (n=35) or tenofovir (TDF) (n=34), and compared with those from 20 untreated HIV-infected patients. A subgroup of patients was restudied after 28–34 months for ex vivo platelet reactivity. In vivo platelet activation markers were assessed by ELISA or flow cytometry, ex vivo platelet reactivity by light transmission aggregometry (LTA) and PFA-100®. The in vitro effects of the ABC metabolite, carbovir triphosphate, on aggregation and intra-platelet cGMP were also studied. sPLA2, sPsel and sGPV increased significantly 6–12 months after the beginning of ABC, but not of TDF or of no treatment. Ex vivo platelet function studies showed enhanced LTA, shorter PFA-100® C/ADP closure time and enhanced platelet expression of P-sel and CD40L in the ABC group. The intake of ABC blunted the increase of intraplatelet cGMP induced by nitric oxide (NO) and acutely enhanced collagen-induced aggregation. Preincubation of control platelets with carbovir triphosphate in vitro enhanced platelet aggregation and blunted NO-induced cGMP elevation. In conclusion, treatment with ABC enhances in vivo platelet activation and induces platelet hyperreactivity by blunting the inhibitory effects of NO on platelets. These effects may lead to an increase of ischaemic cardiovascular events.


1995 ◽  
Vol 74 (05) ◽  
pp. 1225-1230 ◽  
Author(s):  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Raffaele Tartaglione ◽  
Sergio Cortelazzo ◽  
Tiziano Barbui ◽  
...  

SummaryIn order to investigate the in vivo thromboxane (TX) biosynthesis in essential thromboeythemia (ET), we measured the urinary exeretion of the major enzymatic metabolites of TXB2, 11-dehydro-TXB2 and 2,3-dinor-TXB2 in 40 ET patients as well as in 26 gender- and age-matched controls. Urinary 11-dehydro-TXB2 was significantly higher (p <0.001) in thrombocythemic patients (4,063 ± 3,408 pg/mg creatinine; mean ± SD) than in controls (504 ± 267 pg/mg creatinine), with 34 patients (85%) having 11-dehydro-TXB2 >2 SD above the control mean. Patients with platelet number <1,000 × 109/1 (n = 25) had significantly higher (p <0.05) 11 -dehydro-TXB2 excretion than patients with higher platelet count (4,765 ± 3,870 pg/mg creatinine, n = 25, versus 2,279 ± 1,874 pg/mg creatinine, n = 15). Average excretion values of patients aging >55 was significantly higher than in the younger group (4,784 ± 3,948 pg/mg creatinine, n = 24, versus 2,405 ± 1,885 pg/mg creatinine, n = 16, p <0.05). Low-dose aspirin (50 mg/d for 7 days) largely suppressed 11-dehydro-TXB2 excretion in 7 thrombocythemic patients, thus suggesting that platelets were the main source of enhanced TXA2 biosynthesis. The platelet count-corrected 11-dehydro-TXB2 excretion was positively correlated with age (r = 0.325, n = 40, p <0.05) and inversely correlated with platelet count (r = -0.381, n = 40, p <0.05). In addition 11 out of 13 (85%) patients having increased count-corrected 11-dehydro-TXB2 excretion, belonged to the subgroup with age >55 and platelet count <1,000 × 1099/1. We conclude that in essential thrombocythemia: 1) enhanced 11-dehydro-TXB2 excretion largely reflects platelet activation in vivo;2) age as well as platelet count appear to influence the determinants of platelet activation in this setting, and can help in assessing the thrombotic risk and therapeutic strategy in individual patients.


1994 ◽  
Vol 72 (05) ◽  
pp. 659-662 ◽  
Author(s):  
S Bellucci ◽  
W Kedra ◽  
H Groussin ◽  
N Jaillet ◽  
P Molho-Sabatier ◽  
...  

SummaryA double-blind, placebo-controlled randomized study with BAY U3405, a specific thromboxane A2 (TX A2) receptor blocker, was performed in patients suffering from severe stade II limb arteriopathy. BAY U3405 or placebo was administered in 16 patients at 20 mg four times a day (from day 1 to day 3). Hemostatic studies were done before therapy, and on day 2 and day 3 under therapy. On day 3, BAY U3405 was shown to induce a highly statistically significant decrease of the velocity and the intensity of the aggregations mediated by arachidonic acid (56 ± 37% for the velocity, 58 ± 26% for the intensity) or by U46619 endoperoxide analogue (36 ± 35% for the velocity, 37 ± 27% for the intensity). Similar results were already observed on day 2. By contrast, such a decrease was not noticed with ADP mediated platelet aggregation. Furthermore, plasma levels of betathrombo-globulin and platelet factor 4 remained unchanged. Peripheral hemodynamic parameters were also studied. The peripheral blood flow was measured using a Doppler ultrasound; the pain free walking distance and the total walking ability distance were determined under standardized conditions on a treadmill. These last two parameters show a trend to improvement which nevertheless was not statistically significant. All together these results encourage further in vivo studies using BAY U3405 or related compounds on a long-term administration.


2016 ◽  
Vol 115 (02) ◽  
pp. 324-332 ◽  
Author(s):  
Rabie Jouni ◽  
Heike Zöllner ◽  
Ahmad Khadour ◽  
Jan Wesche ◽  
Anne Grotevendt ◽  
...  

SummaryProtamine (PRT) is the standard drug to neutralise heparin. PRT/heparin complexes induce an immune response similar to that observed in heparin-induced thrombocytopenia (HIT). Partially desulfated heparin (ODSH) was shown to interfere with anti-platelet factor 4/heparin antibodies (Abs), which are responsible for HIT. In this study, we analyse the impact of ODSH on the interaction between anti-PRT/heparin Abs and platelets. The ability of ODSH to prevent anti-PRT/heparin Ab-induced platelet destruction in vivo was investigated using the NOD/ SCID mouse model. ODSH improved platelet survival in the presence of PRT, heparin and anti-PRT/heparin Abs (median platelet survival after 300 minutes (min) with 20 μg/ml ODSH: 75 %, range 70–81 % vs without ODSH: 49%, range 44–59%, p=0.006). Furthermore, when ODSH was applied 60 min after Ab injection platelet survival was improved (median platelet survival after 300 min with ODSH: 83 %, range 77–93 % vs without ODSH: 59 %, range 29–61 %, p=0.02). In in vitro experiments ODSH inhibited platelet activation at concentrations > 16 μg/mL (p< 0.001), as well as PRT/heparin complex binding to platelets (mean fluorescence intensity [MFI] without ODSH: 85 ± 14 vs with ODSH: 15 ± 0.6, p=0.013). ODSH also displaced pre-bound complexes from the platelet surface (MFI without ODSH: 324 ± 43 vs with 32 μg/ml ODSH: 53 ± 9, p< 0.001). While interfering with platelet activation by anti-PRT/heparin Abs, up to a concentration of 16 μg/ml, ODSH had only minimal impact on neutralisation of heparin by PRT. In conclusion, our study shows that ODSH is able to inhibit platelet activation and destruction suggesting a potential clinical use to reduce anti-PRT/heparin Ab-mediated adverse effects.


Author(s):  
Zhipeng Sun ◽  
Luqi Wang ◽  
Lu Han ◽  
Yue Wang ◽  
Yuan Zhou ◽  
...  

Background: Calsequestrins (Casqs), comprising the Casq1 and Casq2 isoforms, buffer Ca 2+ and regulate its release in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle, respectively. Human inherited diseases associated with mutations in CASQ1 or CASQ2 include malignant hyperthermia/environmental heat stroke (MH/EHS) and catecholaminergic polymorphic ventricular tachycardia. However, patients with an MH/EHS event often suffer from arrhythmia for which the underlying mechanism remains unknown. Methods: Working hearts from conventional ( Casq1 -KO) and cardiac-specific ( Casq1 -CKO) Casq1 knockout mice were monitored in vivo and ex vivo by electrocardiogram and electrical mapping, respectively. MH was induced by 2% isoflurane and treated intraperitoneally with dantrolene. Time-lapse imaging was used to monitor intracellular Ca 2+ activity in isolated mouse cardiomyocytes or neonatal rat ventricular myocytes (NRVMs) with knockdown, over-expression or truncation of the Casq1 gene. Conformational change in both Casqs was determined by crosslinking Western blot analysis. Results: Like MH/EHS patients, Casq1 -KO and Casq1 -CKO mice had faster basal heart rate, and ventricular tachycardia upon exposure to 2% isoflurane, which could be relieved by dantrolene. Basal sinus tachycardia and ventricular ectopic electrical triggering also occurred in Casq1 -KO hearts ex vivo . Accordingly, the ventricular cardiomyocytes from Casq1 -CKO mice displayed dantrolene-sensitive increased Ca 2+ waves and diastole premature Ca 2+ transients/oscillations upon isoflurane. NRVMs with Casq1-knockdown had enhanced spontaneous Ca2+ sparks/transients upon isoflurane, while cells over-expressing Casq1 exhibited decreased Ca2+ sparks/transients that were absent in cells with truncation of 9 amino acids at the C-terminus of Casq1. Structural evaluation showed that most of the Casq1 protein was present as a polymer and physically interacted with RyR2 in the ventricular SR. The Casq1 isoform was also expressed in human myocardium. Mechanistically, exposure to 2% isoflurane or heating at 41ºC induced Casq1 oligomerization in mouse ventricular and skeletal muscle tissues, leading to a reduced Casq1/RyR2 interaction and increased RyR2 activity in the ventricle. Conclusions: Casq1 is expressed in the heart, where it regulates SR Ca 2+ release and heart rate. Casq1 deficiency independently causes MH/EHS-like ventricular arrhythmia by trigger-induced Casq1 oligomerization and a relief of its inhibitory effect on RyR2-mediated Ca 2+ release, thus revealing a new inherited arrhythmia and a novel mechanism for MH/EHS arrhythmogenesis.


2013 ◽  
Vol 110 (12) ◽  
pp. 1232-1240 ◽  
Author(s):  
Francesca Santilli ◽  
Natale Vazzana ◽  
Pierpaolo Iodice ◽  
Stefano Lattanzio ◽  
Rossella Liani ◽  
...  

SummaryPhysical activity is associated with cardiovascular risk reduction, but the effects of exercise on platelet activation remain controversial. We investigated the effects of regular high-amount, high intensity aerobic exercise on in vivo thromboxane (TX)-dependent platelet activation and plasma levels of platelet-derived proteins, CD40L and P-selectin, and whether platelet variables changes may be related to changes in high-density lipoprotein (HDL) and in the extent of oxidative stress and oxidative stress-related inflammation, as reflected by urinary isoprostane excretion and endogenous soluble receptor for advanced glycation end-products (esRAGE), respectively. Urinary excretion of 11-dehydro-TXB2 and 8-iso-prostaglandin (PG)F2α and plasma levels of P-selectin, CD40L and esRAGE were measured before and after a eight-week standardised aerobic high-amount–high-intensity training program in 22 sedentary subjects with low-to-intermediate risk. Exercise training had a clear beneficial effect on HDL cholesterol (+10%, p=0.027) and triglyceride (-27%, p=0.008) concentration. In addition, a significant (p<0.0001) decrease in urinary 11-dehydro-TXB2 (26%), 8-iso-PGF2α (21 %), plasma P-selectin (27%), CD40L (35%) and a 61% increase in esRAGE were observed. Multiple regression analysis revealed that urinary 8-iso-PGF2α [beta=0.33, SEM=0.116, p=0.027] and esRAGE (beta=-0.30, SEM=31.3, p=0.046) were the only significant predictors of urinary 11-dehydro-TXB2 excretion rate over the training period. In conclusion, regular high-amount–high-intensity exercise training has broad beneficial effects on platelet activation markers, paralleled and possibly associated with changes in the lipoprotein profile and in markers of lipid peroxidation and AGE/RAGE axis. Our findings may help explaining why a similar amount of exercise exerts significant benefits in preventing cardiovascular events.


1979 ◽  
Author(s):  
J. Zahavi ◽  
N.A.G. Jones ◽  
M. Dubiel ◽  
J. Leyton ◽  
V.V. Kakkar

Plasma β TC was measured by radioimmunoassay (RIA)in 202 healthy subjects (age range 12-103); 111 young (mean age 25.2) 34 middle aged (MA) (mean age 55.6) and 57 old (mean age 82.2). Their mean ±1SE plasma β TG levels in ng/ml were 28.3 ± 1.5 (range 3-74), 31.9-2-70 (range 7-65) and 49.99 ± 2.9 (range 14-95) respectively. Plasma βTG level was significantly raised in the old subjects compared to young or MA (p ⩽ 0.0005). Furthermore the ratio of plasma β TG to platelet concentration in whole blood (PC) was higher in the MA subjects compared to the young (p ⩽ 0.009). Plasma platelet factor 4 (PF4) was measured by RIA in 4l healthy subjects, 11 young and 30 old and correlated to plasma βTG. A significant correlation between the 2 proteins was found in the 2 groups (r = 0.8337 in the young and r = 0.0602 in the old subjects), indicating that both proteins are released in-vivo from the same pool and presumably at the same rate. The mean plasma PF4 level in ng/ml was 14.6 (range 6-48) in the young and 18.2 (range 7.7-50) in the old and the ratio of the plasma PF4 to PC was higher in the old subjects (p ⩽ 0.04), These results suggest that in-vivo platelet activation and “release reaction” are increased in old and MA subjects compared to young, presumably due to atherosclerotic vascular changes. This enhanced platelet activity may reflect a pre-thtombotic state.


Sign in / Sign up

Export Citation Format

Share Document