Isolation and Culture of Single Cell Types from Rat Liver

2016 ◽  
Vol 201 (4) ◽  
pp. 253-267 ◽  
Author(s):  
Qidi Zhang ◽  
Ying Qu ◽  
Zhenghong Li ◽  
Qingqing Zhang ◽  
Mingyi Xu ◽  
...  

There have been few reports on the simultaneous isolation of multiple liver cell populations thus far. As such, this study was aimed at establishing a protocol for the simultaneous separation of hepatocytes (HCs), hepatic stellate cells (HSCs), liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) from the rat liver and assessing the in vitro culture of these cells. Single-cell suspensions from the liver were obtained by ethylene glycol tetraacetic acid/collagenase perfusion. After low-speed centrifugal separation of HCs, pronase was added to the nonparenchymal cell fraction to eliminate the remaining HCs. Subsequently, HSCs, LSECs and KCs were purified by two steps of density gradient centrifugation using Nycodenz and Percoll in addition to selective attachment. Pronase treatment increased the HSC yield (1.5 ± 0.2 vs. 0.7 ± 0.3 cells/g liver, p < 0.05) and improved LSEC purity (93.6 ± 3.6 vs. 82.5 ± 5.6%, p < 0.01). The isolated cells could also be cultured in vitro. LSEC apoptosis began on day 3 and reached a maximum on day 7. A few surviving LSECs began proliferating and split to form a cobblestone, sheet-like appearance on day 14. The LSECs on day 14 lost fenestrations but retained scavenger function. Thus, viable and purified liver cells were obtained with a high yield from the rat liver using the developed method, which may be useful for studying the physiology and pathology of the liver in the future.

1969 ◽  
Vol 43 (3) ◽  
pp. 506-520 ◽  
Author(s):  
M. N. Berry ◽  
D. S. Friend

A new technique employing continuous recirculating perfusion of the rat liver in situ, shaking of the liver in buffer in vitro, and filtration of the tissue through nylon mesh, results in the conversion of about 50% of the liver into intact, isolated parenchymal cells. The perfusion media consist of: (a) calcium-free Hanks' solution containing 0.05% collagenase and 0.10% hyaluronidase, and (b) magnesium and calcium-free Hanks' solution containing 2 mM ethylenediaminetetraacetate. Biochemical and morphologic studies indicate that the isolated cells are viable. They respire in a medium containing calcium ions, synthesize glucose from lactate, are impermeable to inulin, do not stain with trypan blue, and retain their structural integrity. Electron microscopy of biopsies taken during and after perfusion reveals that desmosomes are quickly cleaved. Hemidesmosome-containing areas of the cell membrane invaginate and appear to pinch off and migrate centrally. Tight and gap junctions, however, persist on the intact, isolated cells, retaining small segments of cytoplasm from formerly apposing parenchymal cells. Cells which do not retain tight and gap junctions display swelling of Golgi vacuoles and vacuoles in the peripheral cytoplasm. Cytoplasmic vacuolization in a small percentage of cells and potassium loss are the only indications of cell injury detected. By other parameters measured, the isolated cells are comparable to normal hepatic parenchymal cells in situ in appearance and function.


1998 ◽  
Vol 76 (7-8) ◽  
pp. 721-727 ◽  
Author(s):  
M W Bolt ◽  
W J Racz ◽  
J F Brien ◽  
T M Bray ◽  
T E Massey

Treatment of cardiac dysrhythmias with the iodinated benzofuran derivative amiodarone (AM) is limited by pulmonary toxicity. The susceptibilities of different lung cell types of male Golden Syrian hamsters to AM-induced cytotoxicity were investigated in vitro. Bronchoalveolar lavage and protease digestion to release cells, followed by centrifugal elutriation and density gradient centrifugation, resulted in preparations enriched with alveolar macrophages (98%), alveolar type II cells (75-85%), and nonciliated bronchiolar epithelial (Clara) cells (35-50%). Alveolar type II cell and Clara cell preparations demonstrated decreased viability (by 0.5% trypan blue dye exclusion) when incubated with 50 µM AM for 36 h, and all AM-treated cell preparations demonstrated decreased viability when incubated with 100 or 200 µM AM. Based on a viability index ((viability of AM-treated cells ÷ viability of controls) × 100%), the Clara cell fraction was significantly (p < 0.05) more susceptible than all of the other cell types to 50 µM AM. However, AM cytotoxicity was greatest (p < 0.05) in alveolar macrophages following incubation with 100 or 200 µM AM. There was no difference between any of the enriched cell preparations in the amount of drug accumulated following 24 h of incubation with 50 µM AM, whereas alveolar macrophages accumulated the most drug during incubation with 100 µM AM. Thus, the most susceptible cell type was dependent on AM concentration. AM-induced cytotoxicity in specific cell types may initiate processes leading to inflammation and pulmonary fibrosis.Key words: amiodarone, susceptibility, alveolar macrophage, accumulation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongyu Zhao ◽  
Yu Teng ◽  
Wende Hao ◽  
Jie Li ◽  
Zhefeng Li ◽  
...  

Abstract Background Ovarian cancer was one of the leading causes of female deaths. Patients with OC were essentially incurable and portends a poor prognosis, presumably because of profound genetic heterogeneity limiting reproducible prognostic classifications. Methods We comprehensively analyzed an ovarian cancer single-cell RNA sequencing dataset, GSE118828, and identified nine major cell types. Relationship between the clusters was explored with CellPhoneDB. A malignant epithelial cluster was confirmed using pseudotime analysis, CNV and GSVA. Furthermore, we constructed the prediction model (i.e., RiskScore) consisted of 10 prognosis-specific genes from 2397 malignant epithelial genes using the LASSO Cox regression algorithm based on public datasets. Then, the prognostic value of Riskscore was assessed with Kaplan–Meier survival analysis and time-dependent ROC curves. At last, a series of in-vitro assays were conducted to explore the roles of IL4I1, an important gene in Riskscore, in OC progression. Results We found that macrophages possessed the most interaction pairs with other clusters, and M2-like TAMs were the dominant type of macrophages. C0 was identified as the malignant epithelial cluster. Patients with a lower RiskScore had a greater OS (log-rank P < 0.01). In training set, the AUC of RiskScore was 0.666, 0.743 and 0.809 in 1-year, 3-year and 5-year survival, respectively. This was also validated in another two cohorts. Moreover, downregulation of IL4I1 inhibited OC cells proliferation, migration and invasion. Conclusions Our work provide novel insights into our understanding of the heterogeneity among OCs, and would help elucidate the biology of OC and provide clinical guidance in prognosis for OC patients.


2019 ◽  
Author(s):  
Ugur M. Ayturk ◽  
Joseph P. Scollan ◽  
Alexander Vesprey ◽  
Christina M. Jacobsen ◽  
Paola Divieti Pajevic ◽  
...  

ABSTRACTSingle cell RNA-seq (scRNA-seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-seq on freshly recovered long bone endocortical cells from mice that received either vehicle or Sclerostin-neutralizing antibody for 1 week. Bone anabolism-associated transcripts were also not significantly increased in immature and mature osteoblasts recovered from Sclerostin-neutralizing antibody treated mice; this is likely a consequence of being underpowered to detect modest changes in gene expression, since only 7% of the sequenced endocortical cells were osteoblasts, and a limited portion of their transcriptomes were sampled. We conclude that scRNA-seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required.


2021 ◽  
Author(s):  
Surbhi Sharma ◽  
Asgar Hussain Ansari ◽  
Soundhar Ramasamy

AbstractThe circadian clock regulates vital cellular processes by adjusting the physiology of the organism to daily changes in the environment. Rhythmic transcription of core Clock Genes (CGs) and their targets regulate these processes at the cellular level. Circadian clock disruption has been observed in people with neurodegenerative disorders like Alzheimer’s and Parkinson’s. Also, ablation of CGs during development has been shown to affect neurogenesis in both in vivo and in vitro models. Previous studies on the function of CGs in the brain have used knock-out models of a few CGs. However, a complete catalog of CGs in different cell types of the developing brain is not available and it is also tedious to obtain. Recent advancements in single-cell RNA sequencing (scRNA-seq) has revealed novel cell types and elusive dynamic cell states of the developing brain. In this study by using publicly available single-cell transcriptome datasets we systematically explored CGs-coexpressing networks (CGs-CNs) during embryonic and adult neurogenesis. Our meta-analysis reveals CGs-CNs in human embryonic radial glia, neurons and also in lesser studied non-neuronal cell types of the developing brain.


2019 ◽  
Author(s):  
Marcus Alvarez ◽  
Elior Rahmani ◽  
Brandon Jew ◽  
Kristina M. Garske ◽  
Zong Miao ◽  
...  

AbstractSingle-nucleus RNA sequencing (snRNA-seq) measures gene expression in individual nuclei instead of cells, allowing for unbiased cell type characterization in solid tissues. Contrary to single-cell RNA seq (scRNA-seq), we observe that snRNA-seq is commonly subject to contamination by high amounts of extranuclear background RNA, which can lead to identification of spurious cell types in downstream clustering analyses if overlooked. We present a novel approach to remove debris-contaminated droplets in snRNA-seq experiments, called Debris Identification using Expectation Maximization (DIEM). Our likelihood-based approach models the gene expression distribution of debris and cell types, which are estimated using EM. We evaluated DIEM using three snRNA-seq data sets: 1) human differentiating preadipocytes in vitro, 2) fresh mouse brain tissue, and 3) human frozen adipose tissue (AT) from six individuals. All three data sets showed various degrees of extranuclear RNA contamination. We observed that existing methods fail to account for contaminated droplets and led to spurious cell types. When compared to filtering using these state of the art methods, DIEM better removed droplets containing high levels of extranuclear RNA and led to higher quality clusters. Although DIEM was designed for snRNA-seq data, we also successfully applied DIEM to single-cell data. To conclude, our novel method DIEM removes debris-contaminated droplets from single-cell-based data fast and effectively, leading to cleaner downstream analysis. Our code is freely available for use at https://github.com/marcalva/diem.


2021 ◽  
Author(s):  
Tallulah S Andrews ◽  
Jawairia Atif ◽  
Jeff C Liu ◽  
Catia T Perciani ◽  
Xue-Zhong Ma ◽  
...  

The critical functions of the human liver are coordinated through the interactions of hepatic parenchymal and non-parenchymal cells. Recent advances in single cell transcriptional approaches have enabled an examination of the human liver with unprecedented resolution. However, dissociation related cell perturbation can limit the ability to fully capture the human liver's parenchymal cell fraction, which limits the ability to comprehensively profile this organ. Here, we report the transcriptional landscape of 73,295 cells from the human liver using matched single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq). The addition of snRNA-seq enabled the characterization of interzonal hepatocytes at single-cell resolution, revealed the presence of rare subtypes of hepatic stellate cells previously only seen in disease, and detection of cholangiocyte progenitors that had only been observed during in vitro differentiation experiments. However, T and B lymphocytes and NK cells were only distinguishable using scRNA-seq, highlighting the importance of applying both technologies to obtain a complete map of tissue-resident cell-types. We validated the distinct spatial distribution of the hepatocyte, cholangiocyte and stellate cell populations by an independent spatial transcriptomics dataset and immunohistochemistry. Our study provides a systematic comparison of the transcriptomes captured by scRNA-seq and snRNA-seq and delivers a high-resolution map of the parenchymal cell populations in the healthy human liver.


2021 ◽  
Author(s):  
Zhengyu Ouyang ◽  
Nathanael Bourgeois ◽  
Eugenia Lyashenko ◽  
Paige Cundiff ◽  
Patrick F Cullen ◽  
...  

Induced pluripotent stem cell (iPSC) derived cell types are increasingly employed as in vitro model systems for drug discovery. For these studies to be meaningful, it is important to understand the reproducibility of the iPSC-derived cultures and their similarity to equivalent endogenous cell types. Single-cell and single-nucleus RNA sequencing (RNA-seq) are useful to gain such understanding, but they are expensive and time consuming, while bulk RNA-seq data can be generated quicker and at lower cost. In silico cell type decomposition is an efficient, inexpensive, and convenient alternative that can leverage bulk RNA-seq to derive more fine-grained information about these cultures. We developed CellMap, a computational tool that derives cell type profiles from publicly available single-cell and single-nucleus datasets to infer cell types in bulk RNA-seq data from iPSC-derived cell lines.


Blood ◽  
1974 ◽  
Vol 44 (5) ◽  
pp. 707-713 ◽  
Author(s):  
Michael B. Harris ◽  
Isaac Djerassi ◽  
Elias Schwartz ◽  
Richard K. Root

Abstract Preparation of granulocytes for transfusion in high yield and relatively free of contamination by other cell types has been made possible by the technique of continuous-flow filtration leukapheresis (CFFL). Since previous work suggested that granulocytes collected in this manner may have impaired viability and function, a detailed study of the bactericidal, metabolic, and chemotactic properties of such cells was performed and compared to control cells obtained from the same donors prior to CFFL. The granulocyte percentage of the cell suspensions obtained by CFFL averaged 94.5% ± 1.5% compared to 82.5% ± 1.8% for the controls (p < 0.001) with viability of the PMNs determined by trypan blue exclusion being 97.5% ± 0.9% and 98.2% ± 0.5%, respectively. The phogocytic, metabolic (14C-I-glucose oxidation and protein iodination) and chemotactic properties of both cell types were equivalent in suspensions equalized for granulocyte content. These findings indicate that CFFL technique employed does not impair granulocyte viability or function in vitro. Studies of the in vivo survival and function of CFFL granulocytes are necessary to evaluate their efficacy in combating infection in severely leukopenic patients.


2008 ◽  
Vol 20 (9) ◽  
pp. 97
Author(s):  
S. Hubbard ◽  
C. E. Gargett

Cancer stem cells (CSCs) have been identified in solid human cancers, including breast, colon, and ovary. Recent evidence suggests that the highly regenerative human endometrium harbors rare populations of epithelial stem/progenitor cells1. We hypothesised that CSCs are responsible for the epithelial neoplasia associated with endometrial carcinoma (EC), the most common gynaecological malignancy in women. The aim of this study was to demonstrate that a rare population of EC cells posses CSC properties. Stem cell characteristics were assessed in 25 EC and 2 endometrial hyperplasia tissues obtained from women aged 62 ± 9 yrs. Samples were cultured at clonal densities (100–500 cells/cm2) for 3–5 wks to determine cloning efficiency. Individual clones were serially subcloned (<10 cells/cm2) every 2–4 wks to determine self renewal capacity. Isolated cells in serial dilution (103–106 cells) were placed under the kidney capsule of immunocompromised mice for 12–16 wks to examine for the presence of tumour initiating cells (TIC). Resulting tumours and original parent tumours were examined for markers by immunohistochemistry. Most samples (23/26) contained rare colony forming cells. The cloning efficiency was 0.23% ± 0.28% (n = 11) in G1, 0.78% ± 0.67% (n = 8) in G2, 0.22% ± 0.21% (n = 3) in G3, 0.03% (n = 2) in type II tumours, and 0.14% (n = 2) in hyperplasia samples, and did not differ significantly between grades or between type I EC and normal endometrial epithelial samples 1. Single cell derived clones subcloned 2.5 ± 1.4 (n = 11), 3.2 ± 0.4 (n = 5), 3.5 (n = 2), 3.0 ± 1.7 (n = 3), and 2.5 (n = 2) times in G1, G2, G3, type II tumours and hyperplasia samples respectively, indicating increasing self renewal capacity with increasing tumour grade. Transplanted EC single cell suspensions initiated tumour growth with similar morphology, ERα, PR, EpCAM, cytokeratin, and vimentin expression as the parent tumour, indicating the presence of TIC. This evidence suggests that rare cells possessing the CSC properties of clonogenicty, self renewal, and tumorigenicity, may be responsible for the initiation and progression of EC. (1) Chan RWS et al. (2004). Biology of Reproduction. 70:1738–1750


Sign in / Sign up

Export Citation Format

Share Document