scholarly journals Interferon-Dependent Induction of Clr-b during Mouse Cytomegalovirus Infection Protects Bystander Cells from Natural Killer Cells via NKR-P1B-Mediated Inhibition

2017 ◽  
Vol 9 (4) ◽  
pp. 343-358 ◽  
Author(s):  
Christina L. Kirkham ◽  
Oscar A. Aguilar ◽  
Tao Yu ◽  
Miho Tanaka ◽  
Aruz Mesci ◽  
...  

Natural killer (NK) cells are innate lymphocytes that aid in self-nonself discrimination by recognizing cells undergoing pathological alterations. The NKR-P1B inhibitory receptor recognizes Clr-b, a self-encoded marker of cell health downregulated during viral infection. Here, we show that Clr-b loss during mouse cytomegalovirus (MCMV) infection is predicated by a loss of Clr-b (Clec2d) promoter activity and nascent transcripts, driven in part by MCMV ie3 (M122) activity. In contrast, uninfected bystander cells near MCMV-infected fibroblasts reciprocally upregulate Clr-b expression due to paracrine type-I interferon (IFN) signaling. Exposure of fibroblasts to type-I IFN augments Clec2d promoter activity and nascent Clr-b transcripts, dependent upon a cluster of IRF3/7/9 motifs located ∼200 bp upstream of the transcriptional start site. Cells deficient in type-I IFN signaling components revealed IRF9 and STAT1 as key transcription factors involved in Clr-b upregulation. In chromatin immunoprecipitation experiments, the Clec2d IRF cluster recruited STAT2 upon IFN-α exposure, confirming the involvement of ISGF3 (IRF9/STAT1/STAT2) in positively regulating the Clec2d promoter. These findings demonstrate that Clr-b is an IFN-stimulated gene on healthy bystander cells, in addition to a missing-self marker on MCMV-infected cells, and thereby enhances the dynamic range of innate self-nonself discrimination by NK cells.

2016 ◽  
Vol 213 (2) ◽  
pp. 225-233 ◽  
Author(s):  
Sharline Madera ◽  
Moritz Rapp ◽  
Matthew A. Firth ◽  
Joshua N. Beilke ◽  
Lewis L. Lanier ◽  
...  

Type I interferon (IFN) is crucial in host antiviral defense. Previous studies have described the pleiotropic role of type I IFNs on innate and adaptive immune cells during viral infection. Here, we demonstrate that natural killer (NK) cells from mice lacking the type I IFN-α receptor (Ifnar−/−) or STAT1 (which signals downstream of IFNAR) are defective in expansion and memory cell formation after mouse cytomegalovirus (MCMV) infection. Despite comparable proliferation, Ifnar−/− NK cells showed diminished protection against MCMV infection and exhibited more apoptosis compared with wild-type NK cells. Furthermore, we show that Ifnar−/− NK cells express increased levels of NK group 2 member D (NKG2D) ligands during viral infection and are susceptible to NK cell–mediated fratricide in a perforin- and NKG2D-dependent manner. Adoptive transfer of Ifnar−/− NK cells into NK cell–deficient mice reverses the defect in survival and expansion. Our study reveals a novel type I IFN–dependent mechanism by which NK cells evade mechanisms of cell death after viral infection.


2021 ◽  
Author(s):  
Ayad Ali ◽  
Laura M Canaday ◽  
H Alex Feldman ◽  
Hilal Cevik ◽  
MIchael T Moran ◽  
...  

Natural killer (NK) cell suppression of T cells is a key determinant of viral pathogenesis and vaccine efficacy. This process involves perforin-dependent elimination of activated CD4 T cells during the first three days of infection. Although this mechanism requires cell-cell contact, NK cells and T cells typically reside in different compartments of lymphoid tissues at steady state. Here, we show that NK-cell suppression of T cells is associated with a transient accumulation of NK cells within T cell-rich sites of the spleen during lymphocytic choriomeningitis virus infection. The chemokine receptor CXCR3 is required for relocation to T-cell zones and suppression of antiviral T cells. Accordingly, this NK-cell migration is mediated by type I interferon (IFN)-dependent promotion of CXCR3 ligand expression. In contrast, adenoviral vectors that weakly induce type I IFN and do not stimulate NK-cell inhibition of T cells also do not promote measurable redistribution of NK cells to T-cell zones. Provision of supplemental IFN could rescue NK-cell migration during adenoviral vector immunization. Thus, type I IFN and CXCR3 are critical for properly positioning NK cells to constrain antiviral T-cell responses. Development of strategies to curtail migration of NK cells between lymphoid compartments may enhance vaccine-elicited immune responses.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 730-730
Author(s):  
Srividya Swaminathan ◽  
Line Dam Heftdal ◽  
Daniel Liefwalker ◽  
Renumathy Dhanasekaran ◽  
Anja Deutzmann ◽  
...  

Background: Many high-risk B- and T- lymphoid malignancies including Acute Lymphoblastic Leukemia (ALL) and lymphomas exhibit hyperactivation of the MYC oncogene and MYC-associated pathways. Experimentally, direct targeting of MYC in mouse models of MYCHigh lymphoid cancers sustains tumor regression. However, the requirement of MYC in normal lymphocyte physiology has impeded the development of MYC inhibitors. Hence, the development of targeted therapies against MYCHigh lymphoid cancers requires the identification of cell-intrinsic and cell-extrinsic (immune microenvironment) processes uniquely regulated by 'oncogenic' MYC (MYCHigh B/T-lymphoblasts) but not by 'normal' MYC (MYCLow B/T-lymphocytes). Approach: We employed an inducible transgenic mouse model of MYC-driven T-ALL (SRα-tTA/Tet-O-hMYC mice; Felsher and Bishop, Molecular Cell, 1999) to study leukemia-intrinsic, and leukemia-extrinsic immune surveillance mechanisms upon MYC activation (MYCHigh/ON, overt T-ALL), and MYC inactivation (MYCLow/OFF, regressed T-ALL). Inducible regulation of the human MYC (hMYC) transgene specifically in T-lymphoblasts enables us to elucidate how T-ALL-intrinsic MYC impacts normal immune cells during leukemogenesis in vivo. Using mass cytometry (CyTOF), and CIBERSORT to profile the immune microenvironment of MYCHigh/ON and MYCLow/OFF T-ALLs in SRα-tTA/Tet-O-hMYC mice, we identified specific anti- and pro-tumorigenic immune subsets that can be modulated to develop targeted immunotherapies against MYC-driven lymphoid cancers. Results: By conducting CyTOF-based immune profiling of lymphoid organs in healthy mice, and mice bearing MYCON or MYCOFF T-ALL, we demonstrated a significant reduction in numbers of Natural Killer (NK) cells, and an increase in the absolute counts of neutrophils and dendritic cells (DCs) in MYCON mice, in comparison to healthy controls and MYCOFF mice. The reduction in NK cell numbers in MYCON mice led us to hypothesize that the NK subset may play an anti-tumorigenic role in MYC-driven T-ALLs. Since anti-tumor immune subsets can be developed as therapies against MYC-driven lymphoid cancers, we decided to focus on how MYC impacts NK cell-mediated immune surveillance. We demonstrated that mature CD3-NKp46+ Natural Killer (NK) cells are specifically 'excluded' from the T-ALL microenvironment, in a MYC-dependent fashion. Residual NK cells in MYCON T-ALL-bearing mice exhibited suppression of the NK cell maturation/cytotoxicity marker, NKp46. Concordant with the suppression of NKp46 on NK cells in MYCON mice, we observed a blockade in early NK cell development from the NK precursor (NKP) to the immature NK (iNK) stage which is marked by the expression of NKp46. Next, we showed that adoptive transfer of mature CD3- NKp46+ syngeneic NK cells alone is sufficient to delay the initiation of MYCON T-ALL, and the recurrence of MYCOFF T-ALL. Further investigation into the molecular mechanism behind blockade of NK cell maturation in MYC-driven B/T-lymphoid cancers revealed that cancer-intrinsic MYC transcriptionally represses STAT1/2-Type I IFN signaling required for early NK cell maturation from NKP to iNK stage. We observed that treating T-ALL-bearing SRα-tTA/Tet-O-hMYC mice (MYCON)with Type I IFN improves survival by rescuing NK cell maturation. We showed that that low expression of both STAT1 and STAT2 in patients with MYCHigh B- and T-lymphoid neoplasms correlates significantly with the absence of activated NK cells, and predicts unfavorable clinical outcomes. Of note, aggressive MYCHigh B/T-lymphoid cancers are often treated with Type I IFNs, but the molecular mechanisms underlying the anti-cancer properties of Type I IFNs are not completely understood. We demonstrate for the first time that MYC-mediated suppression of NK surveillance may in part be responsible for the sensitivity of B/T-lymphoid cancers to Type I IFN therapy. Conclusion: We conclude that subversion of NK cell-mediated immune surveillance is critical for MYC-induced leukemogenesis. Our studies thus provide a rationale for developing targeted NK cell-based therapies as alternatives to direct MYC inhibition for treating refractory MYCHigh B- and T- lymphoid malignancies. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2874-2882 ◽  
Author(s):  
Karine Crozat ◽  
Céline Eidenschenk ◽  
Baptiste N. Jaeger ◽  
Philippe Krebs ◽  
Sophie Guia ◽  
...  

Abstract Natural killer (NK) cells are innate immune cells that express members of the leukocyte β2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that β2 integrin–deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit+ cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, β2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


2003 ◽  
Vol 197 (8) ◽  
pp. 967-976 ◽  
Author(s):  
Martin Prlic ◽  
Bruce R. Blazar ◽  
Michael A. Farrar ◽  
Stephen C. Jameson

While the specificity and development of natural killer (NK) cells have been intensely studied, little is known about homeostasis of the mature NK population. Here we show that mouse NK cells undergo homeostatic proliferation when transferred into NK-deficient Rag−/− γC−/− hosts. Normal NK functional activity is maintained during this process, although there are some changes in NK phenotype. Using cell sorting, we demonstrate that mature (Mac-1hi) NK cells undergo homeostatic proliferation in an NK-deficient environment, yet immature (Mac-1lo) NK cells also proliferate in such hosts. We find that mature NK cells survive but do not proliferate in hosts which possess an endogenous NK pool. However, we go on to show that mature NK survival is critically dependent on interleukin (IL)-15. Surprisingly, NK survival is also compromised after transfer of cells into IL-15Rα−/− mice, implying that IL-15 responsiveness by bystander cells is critical for NK maintenance. These data imply that, similar to T cells, homeostasis of the NK pool is much more dynamic than previously appreciated and this may be relevant to manipulation of NK cells for therapeutic purposes.


2020 ◽  
pp. annrheumdis-2019-216786
Author(s):  
Margarita Ivanchenko ◽  
Gudny Ella Thorlacius ◽  
Malin Hedlund ◽  
Vijole Ottosson ◽  
Lauro Meneghel ◽  
...  

ObjectiveCongenital heart block (CHB) with immune cell infiltration develops in the fetus after exposure to maternal Ro/La autoantibodies. CHB-related serology has been extensively studied, but reports on immune-cell profiles of anti-Ro/La-exposed neonates are lacking. In the current study, we characterised circulating immune-cell populations in anti-Ro/La+mothers and newborns, and explored potential downstream effects of skewed neonatal cell populations.MethodsIn total, blood from mothers (n=43) and neonates (n=66) was sampled at birth from anti-Ro/La+ (n=36) and control (n=30) pregnancies with or without rheumatic disease and CHB. Flow cytometry, microarrays and ELISA were used for characterising cells and plasma.ResultsSimilar to non-pregnant systemic lupus erythematosus and Sjögren-patients, anti-Ro/La+mothers had altered B-cell subset frequencies, relative T-cell lymphopenia and lower natural killer (NK)-cell frequencies. Surprisingly, their anti-Ro/La exposed neonates presented higher frequencies of CD56dimCD16hi NK cells (p<0.01), but no other cell frequency differences compared with controls. Type I and II interferon (IFN) gene-signatures were revealed in neonates of anti-Ro/La+ pregnancy, and exposure of fetal cardiomyocytes to type I IFN induced upregulation of several NK-cell chemoattractants and activating ligands. Intracellular flow cytometry revealed IFNγ production by NK cells, CD8+ and CD4+ T cells in anti-Ro/La exposed neonates. IFNγ was also detectable in their plasma.ConclusionOur study demonstrates an increased frequency of NK cells in anti-Ro/La exposed neonates, footprints of type I and II IFN and an upregulation of ligands activating NK cells in fetal cardiac cells after type I IFN exposure. These novel observations demonstrate innate immune activation in neonates of anti-Ro/La+pregnancy, which could contribute to the risk of CHB.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 267-267 ◽  
Author(s):  
Sebastian Lundgren ◽  
Jacob Elebro ◽  
Margareta Heby ◽  
Bjorn Nodin ◽  
Jakob Eberhard ◽  
...  

267 Background: Adenocarcinomas in in the pancreas and the periampullary region are heterogenous with the shared trait of having dismal prognosis. Despite recent progress in cancer therapy this has not been reflected in better prognosis for this patient group. Research has thus begun to explore the role of the immune system in pancreatic cancer. The aim of this study was to analyze the prognostic value of CD56+ natural killer (NK) cells in periampullary cancer, with particular reference to morphological type. Methods: Immunohistochemical expression of CD56 in lymphocytes and tumor cells was analyzed in tissue microarrays with tumors from 175 consecutive cases of operated periampullary adenocarcinoma, 110 of pancreatobiliary-type (PB type) and 65 of intestinal-type (I type) morphology. Kaplan-Meier and Cox regression analysis, unadjusted and adjusted for sex, age, stage, grade, size, growth in peripancreatic fat, perineural tissue and blood vessels, adjuvant chemotherapy and resection margins, were applied to determine the impact of CD56 expression on 5-year overall survival (OS). Results: A high density of CD56+ NK cells correlated significantly with low T- and N-stage (p = 0.003; p = 0.009), absent lymphatic, vascular and perineural infiltration (p = 0.007; p = 0.006; p = 0.023) and growth in peripancreatic fat (p = 0.016). High density of CD56+ NK cells was associated with a prolonged OS in univariable, but not multivariable, analysis in PB type, but not in I type, tumors (HR = 0.60; 95% CI 0.37-0.98). Interestingly, high density of CD56+ NK cells was a negative predictor of response to adjuvant chemotherapy in patients with PB-type tumors (p for interaction = 0.020). Tumor specific CD56 expression was significantly associated with reduced OS in univariable, but not in multivariable analysis, in patients with PB type but not in I type tumors (HR = 1.65; 95% CI 1.09-2.49). Conclusions: These results demonstrate that stromal CD56+ NK cell infiltration has a significant favorable impact on prognosis in PB type, but not in I type, periampullary cancer. Of note, this beneficial effect was only seen in patients not receiving chemotherapy, indicating that chemotherapy may modulate the beneficial prognostic effect of NK cells.


1991 ◽  
Vol 173 (5) ◽  
pp. 1053-1063 ◽  
Author(s):  
R M Welsh ◽  
J O Brubaker ◽  
M Vargas-Cortes ◽  
C L O'Donnell

The activation, proliferation, and antiviral properties of natural killer (NK) cells were examined in severe combined immunodeficiency (SCID) mice to determine the influence of mature T or B cells on virus-induced NK cell functions and to more conclusively determine the antiviral properties of prototypical CD3- NK cells. NK cells were activated to high levels of cytotoxicity 3 d after infection of mice with lymphocytic choriomeningitis virus (LCMV) or murine cytomegalovirus (MCMV). Analyses of spleen leukocytes from LCMV-infected mice by a variety of techniques indicated that the NK cells proliferated and increased in number during infection. Propidium iodide staining of the DNA of cycling cells revealed that the great majority of proliferating spleen leukocytes 3 d after LCMV infection was of the NK cell phenotype (CD3-, Ig-, Mac-1+, CZ1+, 50% Thy-1+), in contrast to uninfected mice, whose proliferating cells were predominantly of other lineages. Analyses of the NK cell responses over a 2 wk period in control CB17 mice infected with MCMV indicated a sharp rise in serum interferon (IFN) and spleen NK cell activity early (days 3-5) in infection, followed by sharp declines at later stages. In SCID mice the IFN levels continued to rise over a 10-d period, whereas the NK cell response peaked on day 3-5 and gradually tapered. In contrast to the immunocompetent CB17 mice, SCID mice did not clear the MCMV infection and eventually succumbed. SCID mice, again in contrast to immunocompetent CB17 mice, also failed to clear infections with LCMV and Pichinde virus (PV); these mice, infected as adults, did not die but instead developed long-term persistent infections. Depletion of the NK cells in vivo with antiserum to asialo GM1 rendered both SCID and CB17 control mice much more sensitive to MCMV infection, as shown by titers of virus in organs and by survival curves. In contrast, similar depletions of NK cells did not enhance the titers of the NK cell-resistant virus, LCMV. Two variants of PV, one sensitive to NK cells and the other selected for resistance to NK cells by in vivo passage, were also tested in NK cell-depleted SCID mice. The NK-sensitive PV replicated to higher titers in NK cell-depleted SCID mice, whereas the titers of the NK cell-resistant PV were the same, whether or not the mice had NK cells. These experiments support the concept that CD3- prototypical NK cells mediate resistance to NK cell-sensitive viruses via a mechanism independent of antiviral or "natural" antibody.(ABSTRACT TRUNCATED AT 400 WORDS)


2016 ◽  
Vol 213 (12) ◽  
pp. 2745-2758 ◽  
Author(s):  
Tsukasa Nabekura ◽  
Lewis L. Lanier

Natural killer (NK) cells provide important host defense and can generate long-lived memory NK cells. Here, by using novel transgenic mice carrying inducible Cre expressed under the control of Ncr1 gene, we demonstrated that two distinct long-lived NK cell subsets differentiate in a mouse model of cytomegalovirus (MCMV) infection. NK cells expressing the MCMV-specific Ly49H receptor differentiated into memory NK cells by an activating signaling through Ly49H and Ly49H− NK cells differentiated into cytokine-activated NK cells by exposure to inflammatory cytokines during infection. Interleukin-12 is indispensable for optimal generation of both antigen-specific memory NK cells and cytokine-activated NK cells. MCMV-specific memory NK cells show enhanced effector function and augmented antitumor activity in vivo as compared with cytokine-activated NK cells, whereas cytokine-activated NK cells exhibited a more robust response to IL-15 and persisted better in an MCMV-free environment. These findings reveal that NK cells are capable of differentiation into distinct long-lived subsets with different functional properties.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Kristina S. Burrack ◽  
Geoffrey T. Hart ◽  
Sara E. Hamilton

Abstract Natural killer (NK) cells are important innate effector cells that are well described in their ability to kill virally-infected cells and tumors. However, there is increasing appreciation for the role of NK cells in the control of other pathogens, including intracellular parasites such as Plasmodium, the cause of malaria. NK cells may be beneficial during the early phase of Plasmodium infection—prior to the activation and expansion of antigen-specific T cells—through cooperation with myeloid cells to produce inflammatory cytokines like IFNγ. Recent work has defined how Plasmodium can activate NK cells to respond with natural cytotoxicity, and inhibit the growth of parasites via antibody-dependent cellular cytotoxicity mechanisms (ADCC). A specialized subset of adaptive NK cells that are negative for the Fc receptor γ chain have enhanced ADCC function and correlate with protection from malaria. Additionally, production of the regulatory cytokine IL-10 by NK cells prevents overt pathology and death during experimental cerebral malaria. Now that conditional NK cell mouse models have been developed, previous studies need to be reevaluated in the context of what is now known about other immune populations with similarity to NK cells (i.e., NKT cells and type I innate lymphoid cells). This brief review summarizes recent findings which support the potentially beneficial roles of NK cells during Plasmodium infection in mice and humans. Also highlighted are how the actions of NK cells can be explored using new experimental strategies, and the potential to harness NK cell function in vaccination regimens.


Sign in / Sign up

Export Citation Format

Share Document