scholarly journals Mutual Relationship between Tau and Central Insulin Signalling: Consequences for AD and Tauopathies?

2018 ◽  
Vol 107 (2) ◽  
pp. 181-195 ◽  
Author(s):  
Maud Gratuze ◽  
Aurélie Joly-Amado ◽  
Didier Vieau ◽  
Luc Buée ◽  
David Blum

Alzheimer disease (AD) is a progressive neurodegenerative disorder mainly characterized by cognitive deficits and neuropathological changes such as Tau lesions and amyloid plaques, but also associated with non-cognitive symptomatology. Metabolic and neuroendocrine abnormalities, such as alterations in body weight, brain insulin impairments, and lower brain glucose metabolism, which often precede clinical diagnosis, have been extensively reported in AD patients. However, the origin of these symptoms and their relation to pathology and cognitive impairments remain misunderstood. Insulin is a hormone involved in the control of energy homeostasis both peripherally and centrally, and insulin-resistant state has been linked to increased risk of dementia. It is now well established that insulin resistance can exacerbate Tau lesions, mainly by disrupting the balance between Tau kinases and phosphatases. On the other hand, the emerging literature indicates that Tau protein can also modulate insulin signalling in the brain, thus creating a detrimental vicious circle. The following review will highlight our current understanding of the role of insulin in the brain and its relation to Tau protein in the context of AD and tauopathies. Considering that insulin signalling is prone to be pharmacologically targeted at multiple levels, it constitutes an appealing approach to improve both insulin brain sensitivity and mitigate brain pathology with expected positive outcome in terms of cognition.

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1276
Author(s):  
Dustin Chernick ◽  
Rui Zhong ◽  
Ling Li

The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.


2019 ◽  
Vol 128 (06/07) ◽  
pp. 388-394
Author(s):  
Helge Müller-Fielitz ◽  
Markus Schwaninger

AbstractThyroid hormone (TH) regulation is important for development, energy homeostasis, heart function, and bone formation. To control the effects of TH in target organs, the hypothalamus-pituitary-thyroid (HPT) axis and the tissue-specific availability of TH are highly regulated by negative feedback. To exert a central feedback, TH must enter the brain via specific transport mechanisms and cross the blood-brain barrier. Here, tanycytes, which are located in the ventral walls of the 3rd ventricle in the mediobasal hypothalamus (MBH), function as gatekeepers. Tanycytes are able to transport, sense, and modify the release of hormones of the HPT axis and are involved in feedback regulation. In this review, we focus on the relevance of tanycytes in thyrotropin-releasing hormone (TRH) release and review available genetic tools to investigate the physiological functions of these cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Juhyun Song ◽  
Won Taek Lee ◽  
Kyung Ah Park ◽  
Jong Eun Lee

Vascular dementia is caused by various factors, including increased age, diabetes, hypertension, atherosclerosis, and stroke. Adiponectin is an adipokine secreted by adipose tissue. Adiponectin is widely known as a regulating factor related to cardiovascular disease and diabetes. Adiponectin plasma levels decrease with age. Decreased adiponectin increases the risk of cardiovascular disease and diabetes. Adiponectin improves hypertension and atherosclerosis by acting as a vasodilator and antiatherogenic factor. Moreover, adiponectin is involved in cognitive dysfunction via modulation of insulin signal transduction in the brain. Case-control studies demonstrate the association between low adiponectin and increased risk of stroke, hypertension, and diabetes. This review summarizes the recent findings on the association between risk factors for vascular dementia and adiponectin. To emphasize this relationship, we will discuss the importance of research regarding the role of adiponectin in vascular dementia.


2021 ◽  
Vol 22 (22) ◽  
pp. 12499
Author(s):  
Chaebin Kim ◽  
Ali Yousefian-Jazi ◽  
Seung-Hye Choi ◽  
Inyoung Chang ◽  
Junghee Lee ◽  
...  

Huntington’s disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.


2018 ◽  
Vol 12 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Ricardo B. Maccioni ◽  
Andrea González ◽  
Víctor Andrade ◽  
Nicole Cortés ◽  
José Pablo Tapia ◽  
...  

Background:Alzheimer’s Disease (AD) is a severe neurodegenerative disorder that includes the occurrence of behavioral disorders as well as memory and cognitive impairment as major symptoms. AD affects around 12% of the aged population in the world. Considerable research efforts have pointed to the role of innate immunity as the main culprit in the pathogenesis of AD. In this context, and according to with our neuroimmunomodulation theory, microglial activation modifies the cross-talks between microglia and neurons. We postulated that glial activation triggered by “damage signals” activates a pathological molecular cascade that finally leads to hyperphosphorylation and oligomerization of the tau protein. Interestingly, these modifications correlate with the gradual cognitive impairment of patients with the AD. Microglial activation is determined by the nature and strength of the stimulus. In the AD, a continuous activation state of microglia appears to generate neuronal injury and neurodegeneration, producing the outflow of pathological tau from the inner of neurons to the extraneuronal space. Released tau, together with the contribution of ApoE4 protein, would then produce reactivation of microglia, thus inducing a positive feedback that stimulates the vicious cycle in neurodegeneration.Conclusion:Nevertheless, from the pathophysiological perspective AD is significantly more than a loss of memory. In the initial stages of AD pathogenesis, variations in the dopaminergic pathway along with serotonin diminution play an important role. This may explain why depression is associated with the onset of AD. All these pathophysiological events take place together with immunomodulatory changes that trigger tau oligomerization in the course of neurofibrillary tangles formation. Interestingly, mood disorders appear to be followed by neuroinflammatory processes and structural/functional alterations that lead to cognitive impairment in the context of AD.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Mahmood Mubasher ◽  
Aseel Sukik ◽  
Ahmed Hassan El Beltagi ◽  
Ali Rahil

A 23-year-old lady presented with vertigo and imbalance in walking, blurring of vision, diplopia, and headache, in addition to numbness in the lower limbs over a period of six days. On examination patient had nystagmus, ataxia, positive Romberg test, and hyperreflexia. MRI examination of the brain and spinal cord showed evidence of faint bright signal intensity foci in T2/FLAIR involving bilateral cerebral hemispheres, subcortical deep white matter, bilateral thalami, posterior pons and left brachium pontis, and basal ganglia, with small nodular enhancement that aligned along curvilinear structures; those lesions also were apparent along the spinal cord at multiple levels. The clinical and radiological features suggested CLIPPERS (chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids) syndrome. Symptoms improved dramatically with high dose oral corticosteroids. Our report addresses the radiological and clinical pattern of a case of CLIPPERS rhombencephalitis, with added superior and inferior extension to involve the brain and spinal cord, which is to emphasize the importance of raising the awareness of this disease and the combined role of radiologist and physicians for the diagnosis of this potentially treatable entity, responsive to glucocorticosteroid immunosuppression.


2019 ◽  
Vol 4 (2) ◽  
pp. 90-92 ◽  
Author(s):  
Li Zhang ◽  
Michael Chopp ◽  
Quan Jiang ◽  
Zhenggang Zhang

Diabetes mellitus (DM) is a common metabolic disease in the middle-aged and older population, and is associated with cognitive impairment and an increased risk of developing dementia. The glymphatic system is a recently characterised brain-wide cerebrospinal fluid and interstitial fluid drainage pathway that enables the clearance of interstitial metabolic waste from the brain parenchyma. Emerging data suggest that DM and ageing impair the glymphatic system, leading to accumulation of metabolic wastes including amyloid-β within the brain parenchyma, and consequently provoking cognitive dysfunction. In this review, we concisely discuss recent findings regarding the role of the glymphatic system in DM and ageing associated cognitive impairment.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1018
Author(s):  
Caitlyn A. Mullins ◽  
Ritchel B. Gannaban ◽  
Md Shahjalal Khan ◽  
Harsh Shah ◽  
Md Abu B. Siddik ◽  
...  

Obesity prevalence is increasing at an unprecedented rate throughout the world, and is a strong risk factor for metabolic, cardiovascular, and neurological/neurodegenerative disorders. While low-grade systemic inflammation triggered primarily by adipose tissue dysfunction is closely linked to obesity, inflammation is also observed in the brain or the central nervous system (CNS). Considering that the hypothalamus, a classical homeostatic center, and other higher cortical areas (e.g. prefrontal cortex, dorsal striatum, hippocampus, etc.) also actively participate in regulating energy homeostasis by engaging in inhibitory control, reward calculation, and memory retrieval, understanding the role of CNS oxidative stress and inflammation in obesity and their underlying mechanisms would greatly help develop novel therapeutic interventions to correct obesity and related comorbidities. Here we review accumulating evidence for the association between ER stress and mitochondrial dysfunction, the main culprits responsible for oxidative stress and inflammation in various brain regions, and energy imbalance that leads to the development of obesity. Potential beneficial effects of natural antioxidant and anti-inflammatory compounds on CNS health and obesity are also discussed.


Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3101-3109 ◽  
Author(s):  
Andrea Peier ◽  
Jennifer Kosinski ◽  
Kimberly Cox-York ◽  
Ying Qian ◽  
Kunal Desai ◽  
...  

Neuromedin U (NMU) and neuromedin S (NMS) are structurally related neuropeptides that have been reported to modulate energy homeostasis. Pharmacological data have shown that NMU and NMS inhibit food intake when administered centrally and that NMU increases energy expenditure. Additionally, NMU-deficient mice develop obesity, whereas transgenic mice overexpressing NMU are lean and hypophagic. Two high-affinity NMU/NMS receptors, NMUR1 and NMUR2, have been identified. NMUR1 is predominantly expressed in the periphery, whereas NMUR2 is predominantly expressed in the brain, suggesting that the effects of centrally administered NMU and NMS are mediated by NMUR2. To evaluate the role of NMUR2 in the regulation of energy homeostasis, we characterized NMUR2-deficient (Nmur2−/−) mice. Nmur2−/− mice exhibited a modest resistance to diet-induced obesity that was at least in part due to reduced food intake. Acute central administration of NMU and NMS reduced food intake in wild-type but not in Nmur2−/− mice. The effects on activity and core temperature induced by centrally administered NMU were also absent in Nmur2−/− mice. Moreover, chronic central administration of NMU and NMS evoked significant reductions in body weight and sustained reductions in food intake in mice. In contrast, Nmur2−/− mice were largely resistant to these effects. Collectively, these data demonstrate that the anorectic and weight-reducing actions of centrally administered NMU and NMS are mediated predominantly by NMUR2, suggesting that NMUR2-selective agonists may be useful for the treatment of obesity.


Sign in / Sign up

Export Citation Format

Share Document