scholarly journals Identification of O-GlcNAcylation Modification in Diabetic Retinopathy and Crosstalk with Phosphorylation of STAT3 in Retina Vascular Endothelium Cells

2018 ◽  
Vol 49 (4) ◽  
pp. 1389-1402 ◽  
Author(s):  
Chong Xu ◽  
Guo Dong Liu ◽  
Le Feng ◽  
Cong Hui Zhang ◽  
Fang Wang

Background/Aims: Recently, we observed an increase in O-GlcNAc (O-linked-ß-N-acetylglucosamine) modification, and signal transducer and activator of transcription proteins 3 (STAT3) expression in primary retinal vascular endothelial cells (RVECs) under high glucose conditions and tissues altered by diabetic retinopathy (DR). In this study, we focused on the correlations between O-GlcNAcylation and STAT3 phosphorylation, and their potential effects with regards to DR. Methods: Expression of O-GlcNAcylation and STAT3 were detected in DR-affected tissues and primary RVECs. The relationship between O-GlcNAcylation and STAT3 was further delineated by immunoprecipitation and Western blot analysis. Effects of O-GlcNAcylation on human RVEC apoptosis and involved protein expression were assayed with flow cytometry and Western blot. Results: Global O-GlcNAcylation and pSTAT3 levels were significantly elevated in diabetic rat retina and primary RVECs under high glucose conditions. In vitro assays demonstrated that the Tyr705 site was sensitive to high glucose. While O-GlcNAcylation inhibited p727STAT3 expression, augmented O-GlcNAcylation could balance p705STAT3 expression within relatively high levels corresponding to vascular endothelial growth factor (VEGF) changes. Immunoprecipitation revealed that STAT3 was modified by O-GlcNAcylation and phosphorylation simultaneously. Next, we observed that overexpression of O-GlcNAcylation could relieve human RVEC apoptosis related to the JAK2-Tyr705STAT3-VEGF pathway. Conclusion: O-GlcNAcylation could relieve RVECs apoptosis through the STAT3 pathway in DR, and O-GlcNAcylation combined with STAT3 phosphorylation might open up new insights into the mechanisms of DR and other diabetic complications.

1983 ◽  
Vol 60 (1) ◽  
pp. 89-102
Author(s):  
D de Bono ◽  
C. Green

The interactions between human or bovine vascular endothelial cells and fibroblast-like vascular intimal spindle-shaped cells have been studied in vitro, using species-specific antibodies to identify the different components in mixed cultures. Pure cultures of endothelial cells grow as uniform, nonoverlapping monolayers, but this growth pattern is lost after the addition of spindle cells, probably because the extracellular matrix secreted by the latter causes the endothelial cells to modify the way they are attached to the substrate. The result is a network of tubular aggregates of endothelial cells in a three-dimensional ‘polylayer’ of spindle-shaped cells. On the other hand, endothelial cells added to growth-inhibited cultures of spindle-shaped cells will grow in sheets over the surface of the culture. Human endothelial cells grown in contact with spindle-shaped cells have a reduced requirement for a brain-derived endothelial growth factor. The interactions of endothelial cells and other connective tissue cells in vitro may be relevant to the mechanisms of endothelial growth and blood vessel formation in vivo, and emphasize the potential importance of extracellular matrix in controlling endothelial cell behaviour.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenyi Wu ◽  
Huizuo Xu ◽  
Zhishang Meng ◽  
Jianxi Zhu ◽  
Siqi Xiong ◽  
...  

Proliferative diabetic retinopathy (PDR), characterized mainly with abnormal epiretinal angiogenesis forming fibrovascular membranes (FVMs), threatens vision of people with diabetes; FVMs consist of extracellular matrix and a variety of cell types including vascular endothelial cells. Axl, one of receptor tyrosine kinases, can be activated indirectly by vascular endothelial growth factor-A (VEGF-A) via an intracellular route for promoting angiogenesis. In this study, we revealed that growth arrest-specific protein 6 (Gas6), a specific ligand of Axl, was elevated in vitreous from patients with PDR and that Axl was activated in FVMs from patients with PDR. In addition, we demonstrated that in cultured human retinal microvascular endothelial cells (HRECs), Axl inhibition via suppression of Axl expression with Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR-associated protein 9 or through inactivation with its specific inhibitor R428 blocked PDR vitreous-induced Akt activation and proliferation of HRECs. Furthermore, PDR vitreous-heightened migration and tube formation of HRECs were also blunted by restraining Axl. These results indicate that in the pathogenesis of PDR, Axl can be activated by Gas6 binding directly and by VEGF-A via an intracellular route indirectly, suggesting that Axl plays a pivotal role in the development of PDR and that Axl inhibition shows a bright promise for PDR therapy.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tianqin Wang ◽  
Chaoyang Zhang ◽  
Hai Xie ◽  
Mengmeng Jiang ◽  
Haibin Tian ◽  
...  

Abstract Background Although vascular endothelial growth factor A (VEGF-A) is known to play a key role in causing retinal edema, whether and how VEGF-A induces intracellular edema in the retina still remains unclear. Methods Sprague-Dawley rats were rendered diabetic with intraperitoneal injection of streptozotocin. Intravitreal injection of ranibizumab was performed 8 weeks after diabetes onset. rMC-1 cells (rat Müller cell line) were treated with glyoxal for 24 h with or without ranibizumab. The expression levels of inwardly rectifying K+ channel 4.1 (Kir4.1), aquaporin 4 (AQP4), Dystrophin 71 (Dp71), VEGF-A, glutamine synthetase (GS) and sodium-potassium-ATPase (Na+-K+-ATPase) were examined using Western blot. VEGF-A in the supernatant of the cell culture was detected with ELISA. The intracellular potassium and sodium levels were detected with specific indicators. Results Compared with normal control, protein expressions of Kir4.1 and AQP4 were down-regulated significantly in diabetic rat retinas, which were prevented by ranibizumab. The above changes were recapitulated in vitro. Similarly, the intracellular potassium level in glyoxal-treated rMC-1 cells was increased, while the intracellular sodium level and Na+-K+-ATPase protein level remained unchanged, compared with control. However, ranibizumab treatment decreased intracellular sodium, but not potassium. Conclusion Ranibizumab protected Müller cells from diabetic intracellular edema through the up-regulation of Kir4.1 and AQP4 by directly binding VEGF-A. It also caused a reduction in intracellular osmotic pressure.


Endocrinology ◽  
2006 ◽  
Vol 147 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Bernardetta Nardelli ◽  
Liubov Zaritskaya ◽  
William McAuliffe ◽  
Yansong Ni ◽  
Clint Lincoln ◽  
...  

Vascular endothelial cells (EC) participate in the process of bone formation through the production of factors regulating osteoclast differentiation and function. In this study, we report the selective expression in primary human microvascular EC of Osteostat/TNF superfamily 18, a ligand of the TNF superfamily. Osteostat protein is detectable in human microvascular EC and is highly up-regulated by IFN-α and IFN-β. Moreover, an anti-Osteostat antibody strongly binds to the vascular endothelium in human tissues, demonstrating that the protein is present in the EC layers surrounding blood vessels. Functional in vitro assays were used to define Osteostat involvement in osteoclastogenesis. Both recombinant and membrane-bound Osteostat inhibit differentiation of osteoclasts from monocytic precursor cells. Osteostat suppresses the early stage of osteoclastogenesis via inhibition of macrophage colony-stimulating factor-induced receptor activator of NF-κB (RANK) expression in the osteoclast precursor cells. This effect appears to be specific for the differentiation pathway of the osteoclast lineage, because Osteostat does not inhibit lipopolysaccharide-induced RANK expression in monocytes and dendritic cells, or activation-induced RANK expression in T cells. These findings demonstrate that Osteostat is a novel regulator of osteoclast generation and substantiate the major role played by the endothelium in bone physiology.


Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1053-1059 ◽  
Author(s):  
Gary S. Nakhuda ◽  
Ralf C. Zimmermann ◽  
Peter Bohlen ◽  
Fang Liao ◽  
Mark V. Sauer ◽  
...  

Although it has been previously demonstrated that administration of anti-vascular endothelial growth factor (VEGF) receptor-2 antibodies to hypophysectomized (Hx) mice during gonadotropin-stimulated folliculogenesis and luteogenesis inhibits angiogenesis in the developing follicle and corpus luteum (CL), it is unclear which of the many components of VEGF inhibition are important for the inhibitory effects on ovarian angiogenesis. To examine whether ovarian angiogenesis can be more specifically targeted, we administered an antibody to VE-cadherin (VE-C), an interendothelial adhesion molecule, to Hx mice during gonadotropin stimulation. In tumor models and in vivo and in vitro assays, the anti-VE-C antibody E4G10 has been shown to specifically inhibit angiogenesis, but VE-C has yet to be inhibited in the context of ovarian angiogenesis. In addition to studying the effect on neovascularization in the follicular and luteal phases, we also examined the effect of E4G10 on established vessels of the CL of pregnancy. The results demonstrate that E4G10 specifically blocks neovascularization in the follicular and luteal phases, causing an inhibition of preovulatory follicle and CL development, a decrease in the vascular area, and an inhibition of function demonstrated by reduced hormone levels. However, when administered during pregnancy, unlike anti-VEGF receptor-2 antibody, E4G10 is unable to cause disruption of the established vessels of the mature CL. These data demonstrate that E4G10 causes a specific inhibition of neovascularization in the ovary without destabilizing preexisting vasculature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juliete A. F. Silva ◽  
Xiaoping Qi ◽  
Maria B. Grant ◽  
Michael E. Boulton

AbstractThe vascular endothelial growth factor receptors (VEGFRs) can shape the neovascular phenotype of vascular endothelial cells when translocated to the nucleus, however the spatial and temporal changes in the intracellular distribution and translocation of VEGFRs to the nucleus and the organelles involved in this process is unclear. This study reports the effect of exogenous VEGF on translocation of VEGFRs and organelles in micro- and macrovascular endothelial cells. We showed that VEGF is responsible for: a rapid and substantial nuclear translocation of VEGFRs; VEGFR1 and VEGFR2 exhibit distinct spatial, temporal and structural translocation characteristics both in vitro and in vivo and this determines the nuclear VEGFR1:VEGFR2 ratio which differs between microvascular and macrovascular cells; VEGFR2 nuclear translocation is associated with the endosomal pathway transporting the receptor from Golgi in microvascular endothelial cells; and an increase in the volume of intracellular organelles. In conclusion, the nuclear translocation of VEGFRs is both receptor and vessel (macro versus micro) dependent and the endosomal pathway plays a key role in the translocation of VEGFRs to the nucleus and the subsequent export to the lysosomal system. Modulating VEGF-mediated VEGFR1 and VEGFR2 intracellular transmigration pathways may offer an alternative for the development of new anti-angiogenic therapies.


2020 ◽  
Author(s):  
Lijie Dong ◽  
Zhe Zhang ◽  
Xun Liu ◽  
Qiong Wang ◽  
Yaru Hong ◽  
...  

Abstract Backgroud: Diabetic retinopathy, currently considered a neurovascular disease, has become the major cause of blindness. Continuously high glucose levels are regarded as a risk factor for DR. Intravitreal injection of anti-VEGF drugs is a classic treatment for DR; however, anti-VEGF drugs can exacerbate fibrosis and eventually lead to retinal detachment.Methods: We explored changes in gene expression in high-glucose-induced vascular endothelial cells using RNA sequencing technology, utilized transcriptome signatures to explore the pathogenesis of DR and identified new treatments that can provide dual-target intervention for angiogenesis and fibrosis. We identified BMP4 and SMAD9 among 449 differentially expressed genes from RNA-seq data and investigated the expression of these two genes in the blood of diabetes patients and in STZ-induced rat retinas. Moreover, considering that DR is a multifactorial and multicellular disease, we used H2O2, AGEs, CoCl2, 4HNE and hypoxia to induce three human retinal cell types (Müller, RPE and HRCECs) to simulate the pathogenesis of DR and then verified the overexpression of these two genes in the cell models. We further tested the effects of BMP4 on retinal cells. Results: The results demonstrated that BMP4 and SMAD9 were highly expressed in both in vivo and in vitro models, while BMP4 could significantly upregulate the expression of SMAD9 and promote the expression of VEGF and fibrosis factors.Conclusions: This study is the first to analyze the mechanism by which high glucose levels affect retinal vascular endothelial cells through RNA transcriptome sequencing and indicates that BMP4 may be a potential target for the dual-target treatment (anti-VEGF and antifibrosis) of DR.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Martyna Lupicka ◽  
Anna Zadroga ◽  
Agata Szczepańska ◽  
Anna Justyna Korzekwa

Abstract Background Adenomyosis is a uterine dysfunction defined as the presence of endometrial glands within the myometrium. There is evidence that proangiogenic factors may play a role during the development of adenomyosis; however, exact mechanism remains unknown. The aim of the study was to determine the action of vascular endothelial growth factor A (VEGFA) in uterine tissue and uterine vascular endothelial cells during adenomyosis. Results Uterine tissues were collected and examined for the presence and extent of adenomyosis. Gene and protein expression of VEGFA and its two receptors (VEGFR1 and VEGFR2) was evaluated with quantitative polymerase chain reaction and Western blotting, respectively, in endometrium and myometrium during adenomyosis. Immunolocalization of VEGFA and its receptors within uterine tissues during adenomyosis was also determined. In an in vitro experiment, endothelial cells from non-adenomyotic bovine uteri were treated with media conditioned by non-adenomyotic or adenomyotic uterine slices treated with 17-beta-oestradiol (E2) or progesterone (P4). Both gene and protein expression of VEGFR2 were elevated in endometrium in stages 3–4 of adenomyosis. Protein expression of VEGFA and VEGFR2 as well as VEGFA secretion were increased in endothelial cells treated with media conditioned by adenomyotic uterine slices after E2 treatment. Conclusions Results suggest that VEGFA signalling is an important component, next to E2, that enhances VEGFA action and participates in adenomyosis development in cows.


Sign in / Sign up

Export Citation Format

Share Document