scholarly journals miR-33a Mediates the Anti-Tumor Effect of Lovastatin in Osteosarcoma by Targeting CYR61

2018 ◽  
Vol 51 (2) ◽  
pp. 938-948 ◽  
Author(s):  
Yazeng Huang ◽  
Jun Zhang ◽  
Haiyu Shao ◽  
Jianwen Liu ◽  
Mengran Jin ◽  
...  

Background/Aims: Preventing cell metastasis is an effective therapeutic strategy to treat osteosarcoma and improve prognosis. Statins have been found to have anticancer effects in addition to their cholesterol-lowering action. As a new target of statins, cysteine-rich 61 (CYR61) was recently identified to promote cell migration and metastasis in osteosarcoma. However, the underlying mechanisms mediating the regulation of CYR61 expression by statins remain unknown. Methods: Human osteosarcoma cell lines MG63 and SaOS2 were used to clarify the effect of lovastatin on CYR61 expression. Real-time PCR was performed to detect mRNA or microRNA (miRNA) levels and western blot was performed to detect protein levels. Cell invasive ability was determined using Transwell assays. Lentivirus encoding CYR61 cDNA or sterol regulatory element-binding protein 2 (SREBP-2) shRNA was used to upregulate CYR61 expression or downregulate SREBP-2 expression. Binding of the CYR61 3’ untranslated region (UTR) and miR-33a was analyzed by luciferase reporter assay. Results: We found that lovastatin treatment decreased CYR61 expression, inhibited cell invasion and altered epithelial-to-mesenchymal-transition (EMT)-related protein expression, while CYR61 overexpression abolished the effect of lovastatin. Moreover, lovastatin increased the expression of SREBP-2 and miR-33a, which were then downregulated by SREBP-2 silencing. Bioinformatics analysis indicated that the CYR61 3′UTR harbored a potential miR-33a binding site and luciferase reporter assay demonstrated that CYR61 was a target of miR-33a in osteosarcoma cells. Furthermore, miR-33a could inhibit cell invasion and alter EMT-related protein expression. SREBP-2 silencing or miR-33a inhibitor upregulated CYR61 expression and reversed the effects of lovastatin on cell invasion and EMT-related proteins. Conclusion: Our findings suggest lovastatin suppresses osteosarcoma cell invasion through the SREBP-2/miR-33a/CYR61 pathway.

2021 ◽  
Vol 20 ◽  
pp. 153303382098586
Author(s):  
Xuhui Wu ◽  
Gongzhi Wu ◽  
Huaizhong Zhang ◽  
Xuyang Peng ◽  
Bin Huang ◽  
...  

Objective: We aimed to investigate the mechanism of the regulatory axis of miR-196b/AQP4 underlying the invasion and migration of lung adenocarcinoma (LUAD) cells. Methods: LUAD miRNA and mRNA expression profiles were downloaded from TCGA database and then differential analysis was used to identify the target miRNA. Target gene for the miRNA was obtained via prediction using 3 bioinformatics databases and intersection with the differentially expressed mRNAs searched from TCGA-LUAD. Then, qRT-PCR and western blot were used to validate the expression of miR-196b and AQP4. Dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-196b and AQP4. Transwell assay was used to investigate the migration and invasion of LUAD cells. Results: MiR-196b was screened out by differential and survival analyses, and the downstream target gene AQP4 was identified. In LUAD, miR-196b was highly expressed while AQP4 was poorly expressed. Besides, overexpression of miR-196b promoted cell invasion and migration, while overexpression of AQP4 had negative effects. Moreover, the results of the dual-luciferase reporter assay suggested that AQP4 was a direct target of miR-196b. In addition, we also found that overexpressing AQP4 could suppress the promotive effect of miR-196b on cancer cell invasion and migration. Conclusion: MiR-196b promotes the invasion and migration of LUAD cells by down-regulating AQP4, which helps us find new molecular targeted therapies for LUAD.


2020 ◽  
Author(s):  
Nan Yang ◽  
Tianxiang Chen ◽  
Bowen Yao ◽  
Liang Wang ◽  
Runkun Liu ◽  
...  

Abstract Background: Long non-coding RNAs (lncRNAs) have obtained growing attention due to their potential effects as novel regulators in various tumors. This study aimed to investigate the expression and roles of lncRNA ZFPM2-AS1 in the progression of hepatocellular carcinoma (HCC). Methods: Transwell was used to determine migration and invasion of HCC cells in vitro. The lung metastasis mouse model was established to detect tumor metastasis of HCC in vivo. The direct binding of miR-3612 to 3'UTR of DAM15 was confirmed by luciferase reporter assay. The expression of ZFPM2-AS1 and miR-3612 in HCC specimens and cell lines were detected by real-time PCR. The correlation among ZFPM2-AS1 and miR-3612 were disclosed by a dual-luciferase reporter assay, RIP assay and biotin pull-down assay.Results: In present study, we found that ZFPM2-AS1 was up-regulated in HCC tissues and cells and its upregulation was associated with TNM stage, vascular invasion, and poor prognosis of HCC patients. Functionally, gain- and loss-of-function experiments indicated that ZFPM2-AS1 promoted cell migration, invasion and EMT progress in vitro and in vivo. ZFPM2-AS1 could function as a competing endogenous RNA (ceRNA) by sponging miR-3612 in HCC cells. Mechanically, miR-3612 inhibited HCC metastasis and alternation of miR-3612 reversed the promotive effects of ZFPM2-AS1 on HCC cells. In addition, we confirmed that ADAM15 was a direct target of miR-3612 in HCC and mediated the biological effects of miR-3612 and ZFPM2-AS1 in HCC. Curcumin, an active derivative from turmeric, exerts its anticancer effects through ZFPM2-AS1/miR-3612/ADAM15 pathway. Our data identified ZFPM2-AS1 as a novel oncogenic lncRNA and correlated malignant clinical outcomes in HCC patients. Conclusions: ZFPM2-AS1 performed as oncogenic role via targeting miR-3612 and subsequently promoted ADAM15 expression in HCC. Our results revealed that ZFPM2-AS1 could be a potential prognostic biomarker and therapeutic target for HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yuxu Wang ◽  
Chao Li ◽  
Yuyi Shi ◽  
Jing Kuai

Objective. Liver cancer (LC), one of the familiar malignancies, has a very high morbidity all over the world. The onset of the disease is hidden, and the patients usually do not express any special symptoms. Most of them will have been developed to the middle and later stage when they are diagnosed. This is one of the main reasons why the prognosis of LC is extremely pessimistic all the year round. Recently, researchers have focused mainly on molecular studies, among which LncRNA is a hot spot. This research aims to explore the biological behaviors of LncRNA NKILA and miR-485-5p in LC cells and verify the relationship between them, thereby providing a new theoretical basis for future prevention and treatment. Methods. Ninety-four early LC patients admitted to our hospital from January 2015 to January 2017 were regarded as the research objects. In addition, human LC cells SMMC-7721, HepG2, and normal liver cells HL-7702 were purchased. The LncRNA NKILA and miR-485-5p level in cancer and adjacent tissues, LC, and normal liver cells of patients was tested by PCR. Patients were followed up for 3 years. Then, LncRNA NKILA and miR-485-5p’s effects on prognosis and cell biological behavior were analyzed. At last, the relationship between LncRNA NKILA and miR-485-5p was assessed by a dual-luciferase reporter assay. Results. The LncRNA NKILA expression was high in LC tissues and cells ( P < 0.050 ), while miR-485-5p was low compared with the normal adjacent tissues ( P < 0.050 ). Prognostic follow-up manifested that high LncRNA NKILA or low miR-485-5p could predict the poor prognosis and high mortality risk of the patients ( P < 0.050 ). LC cells with downregulated LncRNA NKILA documented inhibited proliferation, invasion, and EMT, while the apoptosis level of the cells increased ( P < 0.050 ). The proliferation, invasion, and EMT were inhibited by miR-485-5p increase, while the apoptosis of the cells decreased after upregulating miR-485-5p ( P < 0.050 ). Online websites predicted that LncRNA NKILA had a binding site with miR-485-5p, and dual-luciferase reporter assay confirmed that LncRNA NKILA could directly target with miR-485-5p ( P < 0.050 ). The miR-485-5p in LC cells increased after LncRNA NKILA was silenced ( P < 0.050 ). The rescue experiment documented that LncRNA NKILA inhibition on LC cells was reversed by inhibiting miR-485-5p ( P < 0.050 ). Conclusion. The LncRNA NKILA with high expression advances LC cell proliferation, invasion, and EMT by targeting miR-485-5p.


2017 ◽  
Vol 42 (1) ◽  
pp. 357-372 ◽  
Author(s):  
Yin Xiang ◽  
Yachen Zhang ◽  
Yong Tang ◽  
Qianhui Li

Background/Aims: Endothelial-to-mesenchymal transition (EndMT) plays significant roles under various pathological conditions including cardiovascular diseases, fibrosis, and cancer. EndMT of endothelial progenitor cells (EPCs) contributes to neointimal hyperplasia following cell therapy Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA) that promotes metastasis and cancer. MicroRNA-145 (miR-145) is a tumor suppressor that has been reported to inhibit SMAD3-mediated epithelial-to-mesenchymal transition (EMT) of cancer cells. In the present study, we investigated the role of MALAT1 and miR-145 in EndMT of human circulating EPCs induced by transforming growth factor beta1 (TGF-β1). Methods: Human circulating EPCs were isolated and characterized by fluorescence-activated cell sorting (FACS). Expression levels of EndMT markers were assessed by qRT-PCR and western blotting. Alpha-smooth muscle actin (α-SMA) expression was measured by cell immunofluorescence staining. The regulatory relationship between MALAT1 and miR-145 and its target genes, TGFBR2 (TGFβ receptortype II) and SMAD3 (mothers against decapentaplegic homolog 3) was analyzed using the luciferase reporter assay. Results: We found that EndMT of EPCs induced by TGF-β1 is accompanied by increased MALAT1 expression and decreased miR-145 expression, and MALAT1 and miR-145 directly bind and reciprocally repress each other in these cells. Dual-Luciferase Reporter assay indicated that miR-145 inhibits TGF-β1-induced EndMT by directly targeting TGFBR2 and SMAD3. Conclusions: MALAT1 modulates TGF-β1-induced EndMT of EPCs through regulation of TGFBR2 and SMAD3 via miR-145. Thus, the MALAT1-miR-145-TGFBR2/SMAD3 signaling pathway plays a key role in TGF-β1-induced EndMT.


2018 ◽  
Vol 46 (2) ◽  
pp. 442-450 ◽  
Author(s):  
Zhenxin Zheng ◽  
Feng Bao ◽  
Xuhong Chen ◽  
Hongbin Huang ◽  
Xiangfeng Zhang

Background/Aims: Growing evidence has shown that miR-330-3p is closely related to the biological behavior of cancer, including proliferation, metastasis, and prognosis. However, there have been no reports on miR-330-3p expression and function in osteosarcoma. Methods: Expression of miR-330-3p in osteosarcoma tissues and cell lines was examined by quantitative PCR. Effects of miR-330-3p on osteosarcoma cell proliferation were investigated in vitro with the Cell Counting Kit-8 colorimetric assay. Targets of miR-330-3p were identified by dual-luciferase reporter assay. Results: The results showed that expression of miR-330 decreased in osteosarcoma tissues and cell lines. Prognosis of patients with high miR-330-3p expression was much better than that of those with low expression (P=0.001), and multivariate analysis suggested that miR-330-3p is an independent prognostic factor for osteosarcoma. In addition, miR-330-3p overexpression significantly inhibited the growth of MG-63 and U2OS osteosarcoma cells. Dual-luciferase reporter assay demonstrated that Bmi-1 was a direct target gene of miR-330-3p, and in a recovery experiment, miR-330-3p suppressed osteosarcoma cell proliferation by directly targeting Bmi-1. Conclusion: Our results suggest that miR-330-3p acts as a tumor suppressor by regulating Bmi-1 expression in osteosarcoma. Thus, miR-330-3p may represent a novel therapeutic target for the treatment of osteosarcoma.


2018 ◽  
Vol 96 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Feng Dong ◽  
Tingting Liu ◽  
Hao Jin ◽  
Wenbo Wang

Epithelial-to-mesenchymal transition is a cellular process associated with cancer invasion and metastasis. However, the antimetastatic effects of chimaphilin remain elusive. In this study, we attempted to investigate the potential use of chimaphilin as an inhibitor of TGF-β1-induced epithelial-to-mesenchymal transition in U2OS cells. We found that TGF-β1 induced epithelial-to-mesenchymal transition to promote U2OS cell invasion and metastasis. Western blotting demonstrated that chimaphilin inhibited U2OS cell invasion and migration, increased the expression of the epithelial phenotype marker E-cadherin, repressed the expression of the mesenchymal phenotype marker vimentin, as well as decreased the level of epithelial-to-mesenchymal-inducing transcription factors Snail1 and Slug during the initiation of TGF-β1-induced epithelial-to-mesenchymal transition. In this study, we revealed that chimaphilin up-regulated the E-cadherin expression level and inhibited the production of vimentin, Snail1, and Slug in TGF-β1-induced U2OS cells by blocking PI-3K/Akt and ERK 1/2 signaling pathway. Additionally, the TGF-β1-mediated phosphorylated levels of Smad2/3 were inhibited by chimaphilin pretreatment. Above all, we conclude that chimaphilin represents an effective inhibitor of the metastatic potential of U2OS cells through suppression of TGF-β1-induced epithelial-to-mesenchymal transition.


Zygote ◽  
2020 ◽  
pp. 1-10
Author(s):  
Yulei Zhang ◽  
Muling Zhang

Summary Preeclampsia (PE), a pregnancy-specific disease, has become one of the leading causes of maternal and neonatal morbidity and mortality. Pathogenesis of PE has still not been fully addressed and there is a great need to develop early diagnosis markers and effective therapy. This study aimed to determine if lncRNA SNHG14 has a protective effect on placental trophoblast and prevents PE. SNHG14 levels in the peripheral blood from patients with PE or from women with healthy pregnancies were detected using RT-qPCR. The relationship between SNHG14 and miR-330-5p was determined using a dual-luciferase reporter assay. In addition, cell proliferation and cell cycle were evaluated by performing CCK8 assays and flow-cytometric analysis, respectively. Wound-healing and transwell assays were performed to assess cell migration and invasion ability. lncRNA SNHG14 was downregulated in PE patients; it was involved in trophoblast proliferation and regulated cell proliferation during G1/S transition. In addition, lncRNA SNHG14 promoted migration, invasion and epithelial–mesenchymal transition (EMT) in HTR-8/SVneo cells. Luciferase reporter assay indicated that lncRNA SNHG14 served as a molecular sponge for miR-330-5p and negatively regulated miR-330-5p expression in PE. Furthermore, the effects of silenced SNHG14 on trophoblast proliferation, migration, invasion and EMT were reversed by addition of miR-330-5p inhibitor, suggesting that in PE lncRNA SNHG14 functions by competitively binding to miR-330-5p. Taken together, the current study demonstrated that in PE lncRNA SNHG14 is a vital regulator by binding to miR-330-5p. SNHG14 might serve as a therapeutic application in PE progression.


2020 ◽  
Author(s):  
Pengcheng Li ◽  
Junhui Xing ◽  
Jianwu Jiang ◽  
Xinyu Tian ◽  
Xuemeng Liu ◽  
...  

Abstract Background Nasopharyngeal carcinoma (NPC) is the most common malignant tumor in the head and neck that is characterized by high local malignant invasion and distant metastasis. miR-18a-5p reportedly plays an important role in tumorigenesis and development. However, little is known about the mechanism underlying miR-18a-5p’s role in NPC. Methods Quantitative real-time PCR was used to detect the expression of miR-18a-5p in NPC tissues and cell lines. MTT assay and plate clone formation assay were used to detect the effect of miR-18a-5p on NPC cell proliferation. Wound healing assays and Transwell assays were used to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expressions of epithelial mesenchymal transition (EMT)-related proteins N-cadherin, Vimentin, and E-cadherin were detected by Western blot. Bioinformatics and dual-luciferase reporter assay were used to detect the targeting interaction between miR-18a-5p and SMAD2. Xenotransplantation and metastasis model were used to detect the effect of miR-18a-5p on NPC growth and metastasis in vivo. Results miR-18a-5p was highly expressed in NPC tissues and cell lines. Overexpression of miR-18a-5p promoted NPC cell proliferation, invasion, migration, and EMT process, whereas inhibition of miR-18a-5p expression led to the opposite results. Results of dual-luciferase reporter assay showed that SMAD2 was the target gene of miR-18a-5p, and SMAD2 could reverse the effect of miR-18a-5p on NPC cell line. Xenotransplantation and metastasis model experiments in nude mice showed that miR-18a-5p promotes NPC growth and metastasis in vivo. Conclusions Targeting SMAD2 downregulated miR-18a-5p expression, thereby promoting NPC cell proliferation, invasion, migration, and EMT.


2018 ◽  
Vol 49 (4) ◽  
pp. 1564-1576 ◽  
Author(s):  
Hong-Ming Zhu ◽  
Xue-Song Jiang ◽  
Hui-Zi Li ◽  
Lu-Xi Qian ◽  
Ming-Yu Du ◽  
...  

Background/Aims: A recent study found that dysregulated microRNA-184 (miR-184) is involved in the proliferation and survival of nasopharyngeal carcinoma (NPC). This study aimed to evaluate the detailed mechanisms of invasion, migration and metastasis of NPC cells. Methods: Quantitative reverse-transcription PCR (qRT-PCR) and Western blot were used to confirm the expression levels of miR-184 and Notch2. NPC cell invasion and migration were subsequently examined using in vitro cell invasion and wound-healing assays, respectively. MicroRNA (miRNA) target gene prediction databases and dual-luciferase reporter assay were adopted to validate the target genes of miR-184. Results: MiR-184 was downregulated in the NPC cell lines. The miR-184 inhibitor increased the number of invading NPC cells, whereas miR-184 mimics inhibited the invasive ability of such cells. The protein level of E-cadherin decreased, whereas those of N-cadherin and vimentin increased in the anti-miR-184 group. This result showed that miR-184 inhibited NPC cell invasion and metastasis by regulating EMT progression. MiRNA target gene prediction databases indicated the potential of Notch2 as a direct target gene of miR-184. Such a notion was then validated by results of dual-luciferase reporter assay. Notably, shRNANotch2 restrained the EMT and partially abrogated the inhibitory effects of miR-184 on EMT progression in NPC cells. Conclusion: MiR-184 functions as a tumour-suppressive miRNA targeting Notch2 and inhibits the invasion, migration and metastasis of NPC.


Sign in / Sign up

Export Citation Format

Share Document