scholarly journals LncRNA NKILA Promotes Epithelial-Mesenchymal Transition of Liver Cancer Cells by Targeting miR-485-5p

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yuxu Wang ◽  
Chao Li ◽  
Yuyi Shi ◽  
Jing Kuai

Objective. Liver cancer (LC), one of the familiar malignancies, has a very high morbidity all over the world. The onset of the disease is hidden, and the patients usually do not express any special symptoms. Most of them will have been developed to the middle and later stage when they are diagnosed. This is one of the main reasons why the prognosis of LC is extremely pessimistic all the year round. Recently, researchers have focused mainly on molecular studies, among which LncRNA is a hot spot. This research aims to explore the biological behaviors of LncRNA NKILA and miR-485-5p in LC cells and verify the relationship between them, thereby providing a new theoretical basis for future prevention and treatment. Methods. Ninety-four early LC patients admitted to our hospital from January 2015 to January 2017 were regarded as the research objects. In addition, human LC cells SMMC-7721, HepG2, and normal liver cells HL-7702 were purchased. The LncRNA NKILA and miR-485-5p level in cancer and adjacent tissues, LC, and normal liver cells of patients was tested by PCR. Patients were followed up for 3 years. Then, LncRNA NKILA and miR-485-5p’s effects on prognosis and cell biological behavior were analyzed. At last, the relationship between LncRNA NKILA and miR-485-5p was assessed by a dual-luciferase reporter assay. Results. The LncRNA NKILA expression was high in LC tissues and cells ( P < 0.050 ), while miR-485-5p was low compared with the normal adjacent tissues ( P < 0.050 ). Prognostic follow-up manifested that high LncRNA NKILA or low miR-485-5p could predict the poor prognosis and high mortality risk of the patients ( P < 0.050 ). LC cells with downregulated LncRNA NKILA documented inhibited proliferation, invasion, and EMT, while the apoptosis level of the cells increased ( P < 0.050 ). The proliferation, invasion, and EMT were inhibited by miR-485-5p increase, while the apoptosis of the cells decreased after upregulating miR-485-5p ( P < 0.050 ). Online websites predicted that LncRNA NKILA had a binding site with miR-485-5p, and dual-luciferase reporter assay confirmed that LncRNA NKILA could directly target with miR-485-5p ( P < 0.050 ). The miR-485-5p in LC cells increased after LncRNA NKILA was silenced ( P < 0.050 ). The rescue experiment documented that LncRNA NKILA inhibition on LC cells was reversed by inhibiting miR-485-5p ( P < 0.050 ). Conclusion. The LncRNA NKILA with high expression advances LC cell proliferation, invasion, and EMT by targeting miR-485-5p.

2020 ◽  
Vol 12 (12) ◽  
pp. 1413-1421
Author(s):  
Xianghua Sun ◽  
Fushun Li ◽  
Qing Liu ◽  
Xilu Liu ◽  
Guomin Dong ◽  
...  

The morbidity of liver cancer (LC) is increasing and its high mortality poses a significant health threat worldwide. Therefore, it is crucial to identify the underlying mechanism of LC development and progression. The expression of miR-144-3p and ZEB1 gene in LC and paracanerous tissues was measured by Polymerase chain reaction (PCR). We transfected miR-144-3p-mimics, miR-NC, si-ZEB1, and si-NC into HepG2, Huh-7, and HL-7702 normal liver cells to establish a cell model. Protein expression was examined by western blot (WB) analysis. Cell proliferation, invasion, and apoptosis were assessed by CCK-8, Transwell, and flow cytometry assays. The relationship between miR-144-3p and ZEB1 was determined using a dual-luciferase reporter assay. We found that miR-144-3p expression decreased dramatically, whereas ZEB1 increased in hepatocellular carcinoma (HCC). Moreover, over-expressing miR-144-3p suppressed cell growth and induced apoptosis. The expression of apoptosis-related proteins was consistent with the induction of apoptosis. The relationship between miR-144-3p and ZEB1 was confirmed using a dual-luciferase reporter assay. Finally, rescue experiments revealed that over-expressing ZEB1 counteracted miR-144-3p inhibition on LC cell growth, invasion, and apoptosis induction. We conclude that miR-144-3p suppresses HCC cell growth and invasion and promotes apoptosis by regulating ZEB1 expression, suggesting that this interaction may represent a target for HCC treatment.


2018 ◽  
Vol 46 (2) ◽  
pp. 442-450 ◽  
Author(s):  
Zhenxin Zheng ◽  
Feng Bao ◽  
Xuhong Chen ◽  
Hongbin Huang ◽  
Xiangfeng Zhang

Background/Aims: Growing evidence has shown that miR-330-3p is closely related to the biological behavior of cancer, including proliferation, metastasis, and prognosis. However, there have been no reports on miR-330-3p expression and function in osteosarcoma. Methods: Expression of miR-330-3p in osteosarcoma tissues and cell lines was examined by quantitative PCR. Effects of miR-330-3p on osteosarcoma cell proliferation were investigated in vitro with the Cell Counting Kit-8 colorimetric assay. Targets of miR-330-3p were identified by dual-luciferase reporter assay. Results: The results showed that expression of miR-330 decreased in osteosarcoma tissues and cell lines. Prognosis of patients with high miR-330-3p expression was much better than that of those with low expression (P=0.001), and multivariate analysis suggested that miR-330-3p is an independent prognostic factor for osteosarcoma. In addition, miR-330-3p overexpression significantly inhibited the growth of MG-63 and U2OS osteosarcoma cells. Dual-luciferase reporter assay demonstrated that Bmi-1 was a direct target gene of miR-330-3p, and in a recovery experiment, miR-330-3p suppressed osteosarcoma cell proliferation by directly targeting Bmi-1. Conclusion: Our results suggest that miR-330-3p acts as a tumor suppressor by regulating Bmi-1 expression in osteosarcoma. Thus, miR-330-3p may represent a novel therapeutic target for the treatment of osteosarcoma.


2021 ◽  
pp. 096032712110267
Author(s):  
W Yang ◽  
Z Wang ◽  
L Luo ◽  
P Yang ◽  
D Sun ◽  
...  

Asthma is a respiratory disease with a clinically high incidence, and repeated attacks of asthma severely affect the quality of life and even pose a threat to health, leading to severe burdens on families and even the society. A thorough understanding of the pathogenesis of asthma is essential for the prevention and treatment of asthma. This study aimed to examine the effect of the microRNA miR-27a on asthma and its relationship with mitogen activated protein kinase 4 (MAP2K4). Patients with asthma admitted to our hospital from August 2016 to August 2018 and healthy participants in the same period were included in this prospective analysis. The mRNA expression levels of miR-27a and MAP2K4 in peripheral blood were determined. Airway smooth muscle cells (ASMCs) were used to study the effects of miR-27a and MAP2K4 on cell biological behavior. The relationship between miR-27a and MAP2K4 was verified using dual-luciferase reporter assay. miR-27a expression was increased and MAP2K4 mRNA expression was decreased in asthma (P < 0.05). Increasing miR-27a expression and inhibiting MAP2K4 expression could enhance the activity of ASMCs, whereas inhibiting miR-27a expression and increasing MAP2K4 expression had the opposite effect (P < 0.05). Dual-luciferase reporter assay results showed that the fluorescence activity of MAP2K4-wild type was inhibited by increased miR-27a expression (P < 0.05). miR-27a promotes the proliferation and invasion of ASMCs by targeting MAP2K4 and is involved in the occurrence of asthma.


2020 ◽  
Author(s):  
Pengcheng Li ◽  
Junhui Xing ◽  
Jianwu Jiang ◽  
Xinyu Tian ◽  
Xuemeng Liu ◽  
...  

Abstract Background Nasopharyngeal carcinoma (NPC) is the most common malignant tumor in the head and neck that is characterized by high local malignant invasion and distant metastasis. miR-18a-5p reportedly plays an important role in tumorigenesis and development. However, little is known about the mechanism underlying miR-18a-5p’s role in NPC. Methods Quantitative real-time PCR was used to detect the expression of miR-18a-5p in NPC tissues and cell lines. MTT assay and plate clone formation assay were used to detect the effect of miR-18a-5p on NPC cell proliferation. Wound healing assays and Transwell assays were used to detect the effect of miR-18a-5p on NPC cell invasion and migration. The expressions of epithelial mesenchymal transition (EMT)-related proteins N-cadherin, Vimentin, and E-cadherin were detected by Western blot. Bioinformatics and dual-luciferase reporter assay were used to detect the targeting interaction between miR-18a-5p and SMAD2. Xenotransplantation and metastasis model were used to detect the effect of miR-18a-5p on NPC growth and metastasis in vivo. Results miR-18a-5p was highly expressed in NPC tissues and cell lines. Overexpression of miR-18a-5p promoted NPC cell proliferation, invasion, migration, and EMT process, whereas inhibition of miR-18a-5p expression led to the opposite results. Results of dual-luciferase reporter assay showed that SMAD2 was the target gene of miR-18a-5p, and SMAD2 could reverse the effect of miR-18a-5p on NPC cell line. Xenotransplantation and metastasis model experiments in nude mice showed that miR-18a-5p promotes NPC growth and metastasis in vivo. Conclusions Targeting SMAD2 downregulated miR-18a-5p expression, thereby promoting NPC cell proliferation, invasion, migration, and EMT.


2020 ◽  
Author(s):  
Han-xi Ding ◽  
Ye-feng Wu ◽  
Qian Xu ◽  
Yuan Yuan

Abstract Background Pepsinogen C (PGC) is considered to be the final product of mature differentiated gastric mucosa and the expression level of PGC in gastric mucosa decreased obviously in the courses of gastric cancer (GC) development. The mechanism of the down-regulation of PGC is still unclear and needs to be excavated. This study aims to identify the PGC-related ncRNAs, which may have potential to act as PGC post-transcriptional regulator, and further explore the relationship between these ncRNAs and clinicopathological parameters of GC. Methods Bioinformatics software was used to predict the target binding miRNAs for PGC and target binding circRNAs for candidate miRNAs. Dual-luciferase reporter assay was performed to validate the targeted complete complementary relationship. QRT-PCR was applied to detect the expression levels of PGC and PGC-related ncRNAs in GC tissues. Kaplan-Meier and Cox regression were used for the analysis of the relationship between these ncRNAs and prognostic significance of GC Results Hsa-let-7c was predicted to binding to PGC gene, hsa_circ_0001483 and hsa_circ_0001324 were targeted binding to hsa-let-7c, which was verified by dual-luciferase reporter assay. The hsa_circ_0001483 / hsa_circ_0001324 -hsa-let-7c-PGC axis was confirmed in GC tissues by qRT-PCR. The expression of hsa_circ_0001483 was correlated with peritumoral inflammatory cell infiltration level and lymphatic metastasis. Conclusions Hsa_circ_0001483, hsa_circ_0001324 and let-7c were newly identified and validated as PGC-related ncRNAs and were associated with the clinicopathological features of GC in some ways. The hsa_circ_0001483 / hsa_circ_0001324-hsa-let-7c-PGC axis was existed in GC, which may explain the downregulation of PGC in GC tissues.


Author(s):  
Shiran Yan ◽  
Jing Chen ◽  
Teng Zhang ◽  
Jian Zhou ◽  
Ge Wang ◽  
...  

AbstractAtherosclerosis (AS) is a dynamic and multi-stage process that involves various cells types, such as vascular smooth muscle cells (VSMCs) and molecules such as microRNAs. In this study, we investigated how miR-338-3p works in the process of AS. To determine how miR-338-3p was expressed in AS, an AS rat model was established and primary rat VSMCs were cultured. Real-time polymerase chain reaction was performed to detect miR-338-3p expression. Markers of different VSMC phenotypes were tested by Western blot. Immunofluorescent staining was employed to observe the morphologic changes of VSMCs transfected with miR-338-3p mimics. A dual luciferase reporter assay system was used to verify that desmin was a target of miR-338-3p. To further identify the role of miR-338-3p in the development of AS, VSMC proliferation and migration were evaluated by EdU incorporation assay, MTT assay, and wound healing assay. miR-338-3p expression was upregulated in the aortic tissues of an AS rat model and in primary rat VSMCs from a later passage. The transfection of miR-338-3p mimics in VSMCs promoted the synthetic cell phenotype. Bioinformatics analysis proposed desmin as a candidate target for miR-338-3p and the dual luciferase reporter assay confirmed in vivo that desmin was a direct target of miR-338-3p. The MTT and EdU incorporation assay revealed increased cell viability when miR-338-3p mimics were transfected. The increased expression of PCNA was a consistent observation, although a positive result was not obtained with respect to VSMC mobility. In AS, miR-338-3p expression was elevated. Elevated miR-338-3p inhibited the expression of desmin, thus promoting the contractile-to-synthetic VSMC phenotypic transition. In addition to morphologic changes, miR-338-3p enhanced the proliferative but not mobile ability of VSMCs. In summary, miR-338-3p promotes the development of AS.


2021 ◽  
Vol 20 ◽  
pp. 153303382098586
Author(s):  
Xuhui Wu ◽  
Gongzhi Wu ◽  
Huaizhong Zhang ◽  
Xuyang Peng ◽  
Bin Huang ◽  
...  

Objective: We aimed to investigate the mechanism of the regulatory axis of miR-196b/AQP4 underlying the invasion and migration of lung adenocarcinoma (LUAD) cells. Methods: LUAD miRNA and mRNA expression profiles were downloaded from TCGA database and then differential analysis was used to identify the target miRNA. Target gene for the miRNA was obtained via prediction using 3 bioinformatics databases and intersection with the differentially expressed mRNAs searched from TCGA-LUAD. Then, qRT-PCR and western blot were used to validate the expression of miR-196b and AQP4. Dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-196b and AQP4. Transwell assay was used to investigate the migration and invasion of LUAD cells. Results: MiR-196b was screened out by differential and survival analyses, and the downstream target gene AQP4 was identified. In LUAD, miR-196b was highly expressed while AQP4 was poorly expressed. Besides, overexpression of miR-196b promoted cell invasion and migration, while overexpression of AQP4 had negative effects. Moreover, the results of the dual-luciferase reporter assay suggested that AQP4 was a direct target of miR-196b. In addition, we also found that overexpressing AQP4 could suppress the promotive effect of miR-196b on cancer cell invasion and migration. Conclusion: MiR-196b promotes the invasion and migration of LUAD cells by down-regulating AQP4, which helps us find new molecular targeted therapies for LUAD.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 82-83
Author(s):  
Xiaoya Zhao ◽  
Qianru Hui ◽  
Paula Azevedo ◽  
Karmin O ◽  
Chengbo Yang

Abstract The calcium-sensing receptor (CaSR) is a pivotal regulator of calcium homeostasis. Our previous study has found that pig CaSR (pCaSR) is widely expressed in intestinal segments in weaned piglets. To characterize the activation of pCaSR by potential ligands and related cell signaling pathways, a dual-luciferase reporter assay was employed for the ligands screening and molecular docking was utilized to predict the binding mode of identified ligands. Our results showed that the dual-luciferase reporter assay system was well suited for pCaSR research and its ligand screening. The extracellular calcium activated pCaSR in a concentration-dependent manner with a half-maximal effective concentration (EC50) = 4.74 mM through the Gq/11 signaling pathway, EC50 = 2.85 mM through extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation signaling pathway, and EC50 = 2.26 mM through the Ras homolog family member A (RhoA) activation signaling pathway. Moreover, the activation of pCaSR stimulated by extracellular calcium showed biased agonism through three main signaling pathways: ERK1/2 phosphorylation signaling, Gq/11 signaling, and G12/13 signaling. Both L-Tryptophan and α-casein (90–95) could activate the pCaSR in the presence of extracellular calcium. Furthermore, we characterized the L-tryptophan binding pocket formed by pCaSR residues TRP 70, SER 147, ALA168, SER 169, SER 170, ASP 190, GLU 297, ALA 298, and ILE 416, as well as the α-casein (90–95) binding pocket formed by pCaSR residues PRO188, ASN189, GLU191, HIS192, LYS225, LEU242, ASP480, VAL486, GLY487, VAL513, and TYR514. In conclusion, similar to the human CaSR, the pCaSR also shows biased agonism through three main signaling pathways and both α-casein (90–95) and L-tryptophan are agonists for pCaSR. Furthermore, the binding sites of α-casein (90–95) and L-tryptophan are mainly located within the extracellular domain of pCaSR.


2018 ◽  
Vol 51 (2) ◽  
pp. 938-948 ◽  
Author(s):  
Yazeng Huang ◽  
Jun Zhang ◽  
Haiyu Shao ◽  
Jianwen Liu ◽  
Mengran Jin ◽  
...  

Background/Aims: Preventing cell metastasis is an effective therapeutic strategy to treat osteosarcoma and improve prognosis. Statins have been found to have anticancer effects in addition to their cholesterol-lowering action. As a new target of statins, cysteine-rich 61 (CYR61) was recently identified to promote cell migration and metastasis in osteosarcoma. However, the underlying mechanisms mediating the regulation of CYR61 expression by statins remain unknown. Methods: Human osteosarcoma cell lines MG63 and SaOS2 were used to clarify the effect of lovastatin on CYR61 expression. Real-time PCR was performed to detect mRNA or microRNA (miRNA) levels and western blot was performed to detect protein levels. Cell invasive ability was determined using Transwell assays. Lentivirus encoding CYR61 cDNA or sterol regulatory element-binding protein 2 (SREBP-2) shRNA was used to upregulate CYR61 expression or downregulate SREBP-2 expression. Binding of the CYR61 3’ untranslated region (UTR) and miR-33a was analyzed by luciferase reporter assay. Results: We found that lovastatin treatment decreased CYR61 expression, inhibited cell invasion and altered epithelial-to-mesenchymal-transition (EMT)-related protein expression, while CYR61 overexpression abolished the effect of lovastatin. Moreover, lovastatin increased the expression of SREBP-2 and miR-33a, which were then downregulated by SREBP-2 silencing. Bioinformatics analysis indicated that the CYR61 3′UTR harbored a potential miR-33a binding site and luciferase reporter assay demonstrated that CYR61 was a target of miR-33a in osteosarcoma cells. Furthermore, miR-33a could inhibit cell invasion and alter EMT-related protein expression. SREBP-2 silencing or miR-33a inhibitor upregulated CYR61 expression and reversed the effects of lovastatin on cell invasion and EMT-related proteins. Conclusion: Our findings suggest lovastatin suppresses osteosarcoma cell invasion through the SREBP-2/miR-33a/CYR61 pathway.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Huayao Zhang ◽  
Jingwen Peng ◽  
Jianguo Lai ◽  
Haiping Liu ◽  
Zhiyuan Zhang ◽  
...  

Abstract Breast cancer (BC) is a common cancer with poor survival. The present study aimed to explore the effect of miR-940 on the process of BC cells and its target gene FOXO3. The expression of miR-940 was assessed in BC tissues and cells using qRT-PCR. Furthermore, the correlation between miR-940 and prognosis of BC patients from the TCGA database was analyzed. CCK8 assays and colony formation assays were used to explore the effect of miR-940 on BC cell proliferation. The invasion abilities were detected by transwell assays. Luciferase reporter assay was performed to scrutinize the relationship between miR-940 and FOXO3. Finally, rescue experiments were performed through FOXO3 down-regulation and miR-940 inhibitors by using CCK8 assays, colony formation assays and transwell assays. miR-940 was significantly up-regulated in BC cells and tissues. In addition, the high level of miR-940 correlated with poor survival of BC patients (P=0.023). CCK8 assays, colony formation assays and transwell assays indicated that miR-940 promoted the proliferation and invasion abilities of BC cells. The luciferase reporter assay suggested that miR-940 directly targeted FOXO3. Moreover, we found that the effect of si-FOXO3 was rescued by miR-940 inhibitors in BC cells. miR-940 may promote the proliferation and invasion abilities of BC cells by targeting FOXO3. Our study suggested that miR-940 could be a novel molecular target for therapies against BC.


Sign in / Sign up

Export Citation Format

Share Document