3D Bioprinted Cardiac Tissues and Devices for Tissue Maturation

2021 ◽  
pp. 1-14
Author(s):  
Veronika Sedlakova ◽  
Christopher McTiernan ◽  
David Cortes ◽  
Erik J. Suuronen ◽  
Emilio I. Alarcon

Cardiovascular diseases are the leading cause of mortality worldwide. Given the limited endogenous regenerative capabilities of cardiac tissue, patient-specific anatomy, challenges in treatment options, and shortage of donor tissues for transplantation, there is an urgent need for novel approaches in cardiac tissue repair. 3D bioprinting is a technology based on additive manufacturing which allows for the design of precisely controlled and spatially organized structures, which could possibly lead to solutions in cardiac tissue repair. In this review, we describe the basic morphological and physiological specifics of the heart and cardiac tissues and introduce the readers to the fundamental principles underlying 3D printing technology and some of the materials/approaches which have been used to date for cardiac repair. By summarizing recent progress in 3D printing of cardiac tissue and valves with respect to the key features of cardiovascular tissue (such as contractility, conductivity, and vascularization), we highlight how 3D printing can facilitate surgical planning and provide custom-fit implants and properties that match those from the native heart. Finally, we also discuss the suitability of this technology in the design and fabrication of custom-made devices intended for the maturation of the cardiac tissue, a process that has been shown to increase the viability of implants. Altogether this review shows that 3D printing and bioprinting are versatile and highly modulative technologies with wide applications in cardiac regeneration and beyond.

Author(s):  
E. Nocerino ◽  
F. Remondino ◽  
F. Uccheddu ◽  
M. Gallo ◽  
G. Gerosa

In the last years, cardiovascular diagnosis, surgical planning and intervention have taken advantages from 3D modelling and rapid prototyping techniques. The starting data for the whole process is represented by medical imagery, in particular, but not exclusively, computed tomography (CT) or multi-slice CT (MCT) and magnetic resonance imaging (MRI). On the medical imagery, regions of interest, i.e. heart chambers, valves, aorta, coronary vessels, etc., are segmented and converted into 3D models, which can be finally converted in physical replicas through 3D printing procedure. In this work, an overview on modern approaches for automatic and semiautomatic segmentation of medical imagery for 3D surface model generation is provided. The issue of accuracy check of surface models is also addressed, together with the critical aspects of converting digital models into physical replicas through 3D printing techniques. A patient-specific 3D modelling and printing procedure (Figure 1), for surgical planning in case of complex heart diseases was developed. The procedure was applied to two case studies, for which MCT scans of the chest are available. In the article, a detailed description on the implemented patient-specific modelling procedure is provided, along with a general discussion on the potentiality and future developments of personalized 3D modelling and printing for surgical planning and surgeons practice.


2020 ◽  
Vol 7 (1) ◽  
pp. 7 ◽  
Author(s):  
Elisa Mussi ◽  
Federico Mussa ◽  
Chiara Santarelli ◽  
Mirko Scagnet ◽  
Francesca Uccheddu ◽  
...  

In brain tumor surgery, an appropriate and careful surgical planning process is crucial for surgeons and can determine the success or failure of the surgery. A deep comprehension of spatial relationships between tumor borders and surrounding healthy tissues enables accurate surgical planning that leads to the identification of the optimal and patient-specific surgical strategy. A physical replica of the region of interest is a valuable aid for preoperative planning and simulation, allowing the physician to directly handle the patient’s anatomy and easily study the volumes involved in the surgery. In the literature, different anatomical models, produced with 3D technologies, are reported and several methodologies were proposed. Many of them share the idea that the employment of 3D printing technologies to produce anatomical models can be introduced into standard clinical practice since 3D printing is now considered to be a mature technology. Therefore, the main aim of the paper is to take into account the literature best practices and to describe the current workflow and methodology used to standardize the pre-operative virtual and physical simulation in neurosurgery. The main aim is also to introduce these practices and standards to neurosurgeons and clinical engineers interested in learning and implementing cost-effective in-house preoperative surgical planning processes. To assess the validity of the proposed scheme, four clinical cases of preoperative planning of brain cancer surgery are reported and discussed. Our preliminary results showed that the proposed methodology can be applied effectively in the neurosurgical clinical practice both in terms of affordability and in terms of simulation realism and efficacy.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Ali Zolfagharian ◽  
Timothy M Gregory ◽  
Mahdi Bodaghi ◽  
Saleh Gharaie ◽  
Pearse Fay

 Despite the frequency of mallet finger injuries, treatment options can often be costly, time-consuming, and ill-fitted. Three-dimensional (3D) printing allows for the production of highly customized and inexpensive splints, which suggests potential efficacy in the prescription of casts for musculoskeletal injuries. This study explores how the use of engineering concepts such as 3D printing and topology optimization (TO) can improve outcomes for patients. 3D printing enables the direct fabrication of the patient-specific complex shapes while utilizing finite element analysis and TO in the design of the splint allowed for the most efficient distribution of material to achieve mechanical requirements while reducing the amount of material used. The reduction in used material leads to significant improvements in weight reduction and heat dissipation, which would improve breathability and less sweating for the patient, greatly increasing comfort for the duration of their recovery.


2021 ◽  
Vol 4 (3) ◽  
pp. 54
Author(s):  
Athanasios Argyropoulos ◽  
Pantelis N. Botsaris

Three-dimensional (3D) printing is a leading manufacturing technique in the medical field. The constantly improving quality of 3D printers has revolutionized the approach to new challenges in medicine for a wide range of applications including otoplasty, medical devices, and tissue engineering. The aim of this study is to provide a comprehensive overview of an artificial ear splint model applied to the human auricle for the treatment of stick-out protruding ears. The deformity of stick-out protruding ears remains a significant challenge, where the complex and distinctive shape preservation are key factors. To address this challenge, we have developed a protocol that involves photogrammetry techniques, reverse engineering technologies, a smart prototype design, and 3D printing processes. Specifically, we fabricated a 3D printed ear splint model via fused deposition modelling (FDM) technology by testing two materials, a thermoplastic polyester elastomer material (Z-Flex) and polycaprolactone (PCL 100). Our strategy affords a custom-made and patient-specific artificial ear aligner with mechanical properties that ensures sufficient preservation of the auricular shape by applying a force on the helix and antihelix and enables the ears to pin back to the head.


Author(s):  
E. Nocerino ◽  
F. Remondino ◽  
F. Uccheddu ◽  
M. Gallo ◽  
G. Gerosa

In the last years, cardiovascular diagnosis, surgical planning and intervention have taken advantages from 3D modelling and rapid prototyping techniques. The starting data for the whole process is represented by medical imagery, in particular, but not exclusively, computed tomography (CT) or multi-slice CT (MCT) and magnetic resonance imaging (MRI). On the medical imagery, regions of interest, i.e. heart chambers, valves, aorta, coronary vessels, etc., are segmented and converted into 3D models, which can be finally converted in physical replicas through 3D printing procedure. In this work, an overview on modern approaches for automatic and semiautomatic segmentation of medical imagery for 3D surface model generation is provided. The issue of accuracy check of surface models is also addressed, together with the critical aspects of converting digital models into physical replicas through 3D printing techniques. A patient-specific 3D modelling and printing procedure (Figure 1), for surgical planning in case of complex heart diseases was developed. The procedure was applied to two case studies, for which MCT scans of the chest are available. In the article, a detailed description on the implemented patient-specific modelling procedure is provided, along with a general discussion on the potentiality and future developments of personalized 3D modelling and printing for surgical planning and surgeons practice.


Author(s):  
Arivazhagan Pugalendhi ◽  
◽  
SenthilMurugan Arumugam ◽  
Rajesh Ranganathan ◽  
Sivakumar Ganesan ◽  
...  

Evolution of 3D printing from medical image datasets are escalating and has widespread in healthcare applications such as anatomical models, surgical guides, and customized implants. In 3D printing, solid objects are fabricated by the frequently added the thin layers of material as per the digital model. This paper demonstrates the fabrication of 3D printed patient-specific bone models of leg and ankle foot from Digital Imaging and Communications in Medicine (DICOM) files. Processing of DICOM file is prepared by D2P (DICOM to PRINT) software and physical models are produced by Stratasys uPrint 3D printer. This 3D printed anatomical model eliminates the requirement of actual human bones, significance of preservation and mistakes in assembly of bones. The results of the study not only encourage education, surgical planning and validating medical devices but stimulate exciting innovations.


2017 ◽  
Vol 26 (4) ◽  
pp. 513-518 ◽  
Author(s):  
Ralph J. Mobbs ◽  
Marc Coughlan ◽  
Robert Thompson ◽  
Chester E. Sutterlin ◽  
Kevin Phan

OBJECTIVE There has been a recent renewed interest in the use and potential applications of 3D printing in the assistance of surgical planning and the development of personalized prostheses. There have been few reports on the use of 3D printing for implants designed to be used in complex spinal surgery. METHODS The authors report 2 cases in which 3D printing was used for surgical planning as a preoperative mold, and for a custom-designed titanium prosthesis: one patient with a C-1/C-2 chordoma who underwent tumor resection and vertebral reconstruction, and another patient with a custom-designed titanium anterior fusion cage for an unusual congenital spinal deformity. RESULTS In both presented cases, the custom-designed and custom-built implants were easily slotted into position, which facilitated the surgery and shortened the procedure time, avoiding further complex reconstruction such as harvesting rib or fibular grafts and fashioning these grafts intraoperatively to fit the defect. Radiological follow-up for both cases demonstrated successful fusion at 9 and 12 months, respectively. CONCLUSIONS These cases demonstrate the feasibility of the use of 3D modeling and printing to develop personalized prostheses and can ease the difficulty of complex spinal surgery. Possible future directions of research include the combination of 3D-printed implants and biologics, as well as the development of bioceramic composites and custom implants for load-bearing purposes.


2018 ◽  
Vol 52 (1) ◽  
pp. 163-186 ◽  
Author(s):  
Federico Cabitza ◽  
Angela Locoro ◽  
Aurelio Ravarini

Purpose The purpose of this paper is to investigate the phenomenon of the digital do-it-yourself (DiDIY) in the medical domain. In particular, the main contribution of the paper is the analysis and discussion of a questionnaire-based user study focused on 3D printing (3DP) technology, which was conducted among clinicians of one of the most important research hospital group in Lombardy, Italy. Design/methodology/approach A general reflection on the notion of knowledge artifacts (KAs) and on the use of 3DP in medicine is followed by the research questions and by a more detailed analysis of the specialist literature on the usage of 3DP technology for diagnostic, training and surgical planning activities for clinicians and patients. The questionnaire-based user study design is then emerging from the conceptual framework for DiDIY in healthcare. To help focus on the main actors and assets composing the 3DP innovation roles in healthcare, the authors model: the DiDIY-er as the main initiator of the practice innovation; the available technology allowing the envisioning of new practices; the specific activities gaining benefits from the innovative techniques introduced; and the knowledge community continuously supporting and evolving knowledge practices. Findings The authors discuss the results of the user study in the light of the four main components of our DiDIY framework and on the notion of KA. There are differences between high expertise, or senior, medical doctors (MDs) and relatively lower expertise MDs, or younger MDs, regarding the willing to acquire 3DP competences; those who have seen other colleagues using 3DP are significantly more in favor of 3DP adoption in medical practices, and those who wish to acquire 3DP competence and do-by-themselves are significantly more interested in the making of custom-made patient-specific tools, such as cutting guides and templates; there are many recurrent themes regarding how 3DP usage and application may improve medical practice. In each of the free-text questions, there were comments regarding the impact of 3DP on medical knowledge practices, such as surgical rehearsal, surgery, pathology comprehension, patient-physician communication and teaching. Originality/value The 3DP adoption in healthcare is seen favorably and advocated by most of the respondents. In this domain, 3DP objects can be considered KAs legitimately. They can support knowledgeable practices, promote knowledge sharing and circulation in the healthcare community, as well as contribute to their improvement by the introduction of a new DiDIY mindset in the everyday work of MDs.


2020 ◽  
Author(s):  
Vincenzo Campana ◽  
Valentina Cardona ◽  
Valeria Vismara ◽  
Andrea Stefano Monteleone ◽  
Piero Piazza ◽  
...  

Three-dimensional (3D) printing is a novel modality with the potential to make a huge impact in the surgical field. The aim of this paper is to provide an overview on the current use of 3D printing in shoulder surgery. We have reviewed the use of this new method in 3 fields of shoulder surgery: shoulder arthroplasty, recurrent shoulder instability and orthopedic shoulder traumatology. In shoulder arthroplasty, several authors have shown that the use of the 3D printer improves the positioning of the glenoid component, even if longer clinical follow-up is needed to determine whether the cost of this system rationalizes the potential improved functional outcomes and decreases glenoid revision rates. In the treatment of anterior shoulder instability, the literature agrees on the fact that the use of the 3D printing can: enhance the dept and size of bony lesions, allowing a patient tailored surgical planning and potentially reducing operative times; allow the production of personalized implants to restore substantial bone loss; restore glenohumeral morphology and instability. In orthopedic trauma, the use of 3D printing can be helpful to increase the understanding of fracture patterns, facilitating a more personalized planning, and can be used for resident training and education. We can conclude the current literature regarding the use of 3D printed models in orthopedic surgery agrees finding objective improvements to preoperative planning and to the surgical procedure itself, by shortening the intraoperative time and by the possibility to develop custom-made, patient-specific surgical instruments, and it suggests that there are tangible benefits for its implementation.


2020 ◽  
Vol 26 (2) ◽  
pp. 91-97
Author(s):  
E. I. Solod ◽  
A. F. Lazarev ◽  
R. A. Petrovskiy ◽  
M. A. Abdulkhabirov ◽  
Y. M. Alsmadi

Rationale. The development of 3D printing technology allows the manufacture of individual implants to treat the patients with diseases and consequences of musculoskeletal system injuries. However, the use of additive technologies in the patients with multiple trauma in the acute period is limited. The purpose of study was to demonstrate the possibility of using individual implants for the definitive fixation of the anterior pelvic ring in a patient with multiple trauma.Patient concerns. A 22-year-old patient was admitted after an injury as a result of a fall from the 5th floor. The treatment was carried out in accordance with the ATLS protocol. Diagnosis: multiple trauma; closed chest, pelvis and limbs injuries; fracture of the left 2nd to 5th ribs; pelvic bones fracture AO/ OTA: 61-C1.3a; fracture of both bones of the left lower leg AO/OTA: 42-B3b; 2nd degree shock.Interventions. An emergency external fixation of the pelvis and lower leg bones was performed. An individual implant for pubic bone fixation was made using 3D printing. On the 8th day, the definitive fixation of the pelvic and left lower leg bones was performed. The patient is activated on the 1st day after the surgery.Outcomes. The early postoperative period was uneventful. The functional result on the Majeed scale in 6 months by remote filling out the questionnaire was 84 points. Lessons. The custom-made implants make it possible the successful fixation of the anterior pelvic ring. The use of 3D printing technologies for the osteosynthesis of pelvic fractures is promising, although requires further study.


Sign in / Sign up

Export Citation Format

Share Document