Detection of Epileptic Seizure Using Pretrained Deep Convolutional Neural Network and Transfer Learning

2020 ◽  
Vol 83 (6) ◽  
pp. 602-614
Author(s):  
Hidir Selcuk Nogay ◽  
Hojjat Adeli

<b><i>Introduction:</i></b> The diagnosis of epilepsy takes a certain process, depending entirely on the attending physician. However, the human factor may cause erroneous diagnosis in the analysis of the EEG signal. In the past 2 decades, many advanced signal processing and machine learning methods have been developed for the detection of epileptic seizures. However, many of these methods require large data sets and complex operations. <b><i>Methods:</i></b> In this study, an end-to-end machine learning model is presented for detection of epileptic seizure using the pretrained deep two-dimensional convolutional neural network (CNN) and the concept of transfer learning. The EEG signal is converted directly into visual data with a spectrogram and used directly as input data. <b><i>Results:</i></b> The authors analyzed the results of the training of the proposed pretrained AlexNet CNN model. Both binary and ternary classifications were performed without any extra procedure such as feature extraction. By performing data set creation from short-term spectrogram graphic images, the authors were able to achieve 100% accuracy for binary classification for epileptic seizure detection and 100% for ternary classification. <b><i>Discussion/Conclusion:</i></b> The proposed automatic identification and classification model can help in the early diagnosis of epilepsy, thus providing the opportunity for effective early treatment.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jian-ye Yuan ◽  
Xin-yuan Nan ◽  
Cheng-rong Li ◽  
Le-le Sun

Considering that the garbage classification is urgent, a 23-layer convolutional neural network (CNN) model is designed in this paper, with the emphasis on the real-time garbage classification, to solve the low accuracy of garbage classification and recycling and difficulty in manual recycling. Firstly, the depthwise separable convolution was used to reduce the Params of the model. Then, the attention mechanism was used to improve the accuracy of the garbage classification model. Finally, the model fine-tuning method was used to further improve the performance of the garbage classification model. Besides, we compared the model with classic image classification models including AlexNet, VGG16, and ResNet18 and lightweight classification models including MobileNetV2 and SuffleNetV2 and found that the model GAF_dense has a higher accuracy rate, fewer Params, and FLOPs. To further check the performance of the model, we tested the CIFAR-10 data set and found the accuracy rates of the model (GAF_dense) are 0.018 and 0.03 higher than ResNet18 and SufflenetV2, respectively. In the ImageNet data set, the accuracy rates of the model (GAF_dense) are 0.225 and 0.146 higher than Resnet18 and SufflenetV2, respectively. Therefore, the garbage classification model proposed in this paper is suitable for garbage classification and other classification tasks to protect the ecological environment, which can be applied to classification tasks such as environmental science, children’s education, and environmental protection.


2021 ◽  
pp. 20201263
Author(s):  
Mohammad Salehi ◽  
Reza Mohammadi ◽  
Hamed Ghaffari ◽  
Nahid Sadighi ◽  
Reza Reiazi

Objective: Pneumonia is a lung infection and causes the inflammation of the small air sacs (Alveoli) in one or both lungs. Proper and faster diagnosis of pneumonia at an early stage is imperative for optimal patient care. Currently, chest X-ray is considered as the best imaging modality for diagnosing pneumonia. However, the interpretation of chest X-ray images is challenging. To this end, we aimed to use an automated convolutional neural network-based transfer-learning approach to detect pneumonia in paediatric chest radiographs. Methods: Herein, an automated convolutional neural network-based transfer-learning approach using four different pre-trained models (i.e. VGG19, DenseNet121, Xception, and ResNet50) was applied to detect pneumonia in children (1–5 years) chest X-ray images. The performance of different proposed models for testing data set was evaluated using five performances metrics, including accuracy, sensitivity/recall, Precision, area under curve, and F1 score. Results: All proposed models provide accuracy greater than 83.0% for binary classification. The pre-trained DenseNet121 model provides the highest classification performance of automated pneumonia classification with 86.8% accuracy, followed by Xception model with an accuracy of 86.0%. The sensitivity of the proposed models was greater than 91.0%. The Xception and DenseNet121 models achieve the highest classification performance with F1-score greater than 89.0%. The plotted area under curve of receiver operating characteristics of VGG19, Xception, ResNet50, and DenseNet121 models are 0.78, 0.81, 0.81, and 0.86, respectively. Conclusion: Our data showed that the proposed models achieve a high accuracy for binary classification. Transfer learning was used to accelerate training of the proposed models and resolve the problem associated with insufficient data. We hope that these proposed models can help radiologists for a quick diagnosis of pneumonia at radiology departments. Moreover, our proposed models may be useful to detect other chest-related diseases such as novel Coronavirus 2019. Advances in knowledge: Herein, we used transfer learning as a machine learning approach to accelerate training of the proposed models and resolve the problem associated with insufficient data. Our proposed models achieved accuracy greater than 83.0% for binary classification.


2020 ◽  
Vol 10 (6) ◽  
pp. 1999 ◽  
Author(s):  
Milica M. Badža ◽  
Marko Č. Barjaktarović

The classification of brain tumors is performed by biopsy, which is not usually conducted before definitive brain surgery. The improvement of technology and machine learning can help radiologists in tumor diagnostics without invasive measures. A machine-learning algorithm that has achieved substantial results in image segmentation and classification is the convolutional neural network (CNN). We present a new CNN architecture for brain tumor classification of three tumor types. The developed network is simpler than already-existing pre-trained networks, and it was tested on T1-weighted contrast-enhanced magnetic resonance images. The performance of the network was evaluated using four approaches: combinations of two 10-fold cross-validation methods and two databases. The generalization capability of the network was tested with one of the 10-fold methods, subject-wise cross-validation, and the improvement was tested by using an augmented image database. The best result for the 10-fold cross-validation method was obtained for the record-wise cross-validation for the augmented data set, and, in that case, the accuracy was 96.56%. With good generalization capability and good execution speed, the new developed CNN architecture could be used as an effective decision-support tool for radiologists in medical diagnostics.


2020 ◽  
Vol 32 ◽  
pp. 01012
Author(s):  
Mayank Shete ◽  
Saahil Sabnis ◽  
Srijan Rai ◽  
Gajanan Birajdar

Diabetic Retinopathy is one of the most prominent eye diseases and is the leading cause of blindness amongst adults. Automatic detection of Diabetic Retinopathy is important to prevent irreversible damage to the eye-sight. Existing feature learning methods have a lesser accuracy rate in computer aided diagnostics; this paper proposes a method to further increase the accuracy. Machine learning can be used effectively for the diagnosis of this disease. CNN and transfer learning are used for the severity classification and have achieved an accuracy of 73.9 percent. The use of XGBoost classifier yielded an accuracy of 76.5 percent.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Saad Awadh Alanazi ◽  
M. M. Kamruzzaman ◽  
Md Nazirul Islam Sarker ◽  
Madallah Alruwaili ◽  
Yousef Alhwaiti ◽  
...  

Breast cancer forms in breast cells and is considered as a very common type of cancer in women. Breast cancer is also a very life-threatening disease of women after lung cancer. A convolutional neural network (CNN) method is proposed in this study to boost the automatic identification of breast cancer by analyzing hostile ductal carcinoma tissue zones in whole-slide images (WSIs). The paper investigates the proposed system that uses various convolutional neural network (CNN) architectures to automatically detect breast cancer, comparing the results with those from machine learning (ML) algorithms. All architectures were guided by a big dataset of about 275,000, 50 × 50-pixel RGB image patches. Validation tests were done for quantitative results using the performance measures for every methodology. The proposed system is found to be successful, achieving results with 87% accuracy, which could reduce human mistakes in the diagnosis process. Moreover, our proposed system achieves accuracy higher than the 78% accuracy of machine learning (ML) algorithms. The proposed system therefore improves accuracy by 9% above results from machine learning (ML) algorithms.


2020 ◽  
Vol 14 ◽  
Author(s):  
Gaowei Xu ◽  
Tianhe Ren ◽  
Yu Chen ◽  
Wenliang Che

Frequent epileptic seizures cause damage to the human brain, resulting in memory impairment, mental decline, and so on. Therefore, it is important to detect epileptic seizures and provide medical treatment in a timely manner. Currently, medical experts recognize epileptic seizure activity through the visual inspection of electroencephalographic (EEG) signal recordings of patients based on their experience, which takes much time and effort. In view of this, this paper proposes a one-dimensional convolutional neural network-long short-term memory (1D CNN-LSTM) model for automatic recognition of epileptic seizures through EEG signal analysis. Firstly, the raw EEG signal data are pre-processed and normalized. Then, a 1D convolutional neural network (CNN) is designed to effectively extract the features of the normalized EEG sequence data. In addition, the extracted features are then processed by the LSTM layers in order to further extract the temporal features. After that, the output features are fed into several fully connected layers for final epileptic seizure recognition. The performance of the proposed 1D CNN-LSTM model is verified on the public UCI epileptic seizure recognition data set. Experiments results show that the proposed method achieves high recognition accuracies of 99.39% and 82.00% on the binary and five-class epileptic seizure recognition tasks, respectively. Comparing results with traditional machine learning methods including k-nearest neighbors, support vector machines, and decision trees, other deep learning methods including standard deep neural network and CNN further verify the superiority of the proposed method.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2188
Author(s):  
Donggeun Roh ◽  
Hangsik Shin

The purpose of this study was to develop a machine learning model that could accurately evaluate the quality of a photoplethysmogram based on the shape of the photoplethysmogram and the phase relevance in a pulsatile waveform without requiring complicated pre-processing. Photoplethysmograms were recorded for 76 participants (5 min for each participant). All recorded photoplethysmograms were segmented for each beat to obtain a total of 49,561 pulsatile segments. These pulsatile segments were manually labeled as ‘good’ and ‘poor’ classes and converted to a two-dimensional phase space trajectory image using a recurrence plot. The classification model was implemented using a convolutional neural network with a two-layer structure. As a result, the proposed model correctly classified 48,827 segments out of 49,561 segments and misclassified 734 segments, showing a balanced accuracy of 0.975. Sensitivity, specificity, and positive predictive values of the developed model for the test dataset with a ‘poor’ class classification were 0.964, 0.987, and 0.848, respectively. The area under the curve was 0.994. The convolutional neural network model with recurrence plot as input proposed in this study can be used for signal quality assessment as a generalized model with high accuracy through data expansion. It has an advantage in that it does not require complicated pre-processing or a feature detection process.


Sign in / Sign up

Export Citation Format

Share Document