scholarly journals Sensitivity analysis of simplified low cost converging thermal wave technique for thin bilayer solid

Author(s):  
M. Shahril Shahril Bin Husin

<div><p class="ABSabstract">In this paper, the sensitivity analysis of thermo physical parameters of the semi-infinite bilayer was presented by using a simplified converging thermal wave model. This is done under the consideration that radial flow of converging thermal wave substantially dominates in the first layer and axial thermal wave, dominates in the second layer. The sensitivity of the correlated parameters due to the 5%, 10% and 100% of increment were evaluated.. The results of the calculated temperature were simulated by Mathematica software, in order to generate a sensitivity analysis and examined by graphs. From this analysis, we concluded the optimum conditions, hence to be applied in the real experiment. Our merit on this report is for introducing a simple method of optical transient heating by using low cost equipment such as camera’s flash lamp and thermocouple, which may also apply to the short pulse laser measurement. A brief theory of the present work is presented and the results obtained from the simulation are discussed.</p></div>

2015 ◽  
Vol 362 ◽  
pp. 209-223 ◽  
Author(s):  
Ewa Majchrzak ◽  
Jolanta Dziatkiewicz ◽  
Łukasz Turchan

In the paper the selected problems related to the modeling of microscale heat transfer are presented. In particular, thermal processes occurring in thin metal films exposed to short-pulse laser are described by two-temperature hyperbolic model supplemented by appropriate boundary and initial conditions. Sensitivity analysis of electrons and phonons temperatures with respect to the microscopic parameters is discussed and also the inverse problems connected with the identification of relaxation times and coupling factor are presented. In the final part of the paper the examples of computations are shown.


2018 ◽  
Vol 6 ◽  
Author(s):  
F. Zhang ◽  
Z. G. Deng ◽  
L. Q. Shan ◽  
Z. M. Zhang ◽  
B. Bi ◽  
...  

Muons produced by the Bethe–Heitler process from laser wakefield accelerated electrons interacting with high $Z$ materials have velocities close to the laser wakefield. It is possible to accelerate those muons with laser wakefield directly. Therefore for the first time we propose an all-optical ‘Generator and Booster’ scheme to accelerate the produced muons by another laser wakefield to supply a prompt, compact, low cost and controllable muon source in laser laboratories. The trapping and acceleration of muons are analyzed by one-dimensional analytic model and verified by two-dimensional particle-in-cell (PIC) simulation. It is shown that muons can be trapped in a broad energy range and accelerated to higher energy than that of electrons for longer dephasing length. We further extrapolate the dependence of the maximum acceleration energy of muons with the laser wakefield relativistic factor $\unicode[STIX]{x1D6FE}$ and the relevant initial energy $E_{0}$. It is shown that a maximum energy up to 15.2 GeV is promising with $\unicode[STIX]{x1D6FE}=46$ and $E_{0}=1.45~\text{GeV}$ on the existing short pulse laser facilities.


Author(s):  
Feng Zhang ◽  
Boyuan Li ◽  
Lianqiang Shan ◽  
Bo Zhang ◽  
Wei Hong ◽  
...  

Muons produced by a short pulse laser can serve as a new type of muon source having potential advantages of high intensity, small source emittance, short pulse duration and low cost. To validate it in experiments, a suitable muon diagnostics system is needed since high muon flux generated by a short pulse laser shot is always accompanied by high radiation background, which is quite different from cases in general muon researches. A detection system is proposed to distinguish muon signals from radiation background by measuring the muon lifetime. It is based on the scintillator detector with water and lead shields, in which water is used to adjust energies of muons stopped in the scintillator and lead to against radiation background. A Geant4 simulation on the performance of the detection system shows that efficiency up to 52% could be arrived for low-energy muons around 200 MeV and this efficiency decreases to 14% for high-energy muons above 1000 MeV. The simulation also shows that the muon lifetime can be derived properly by measuring attenuation of the scintilla light of electrons from muon decays inside the scintillator detector.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 946
Author(s):  
Weibo Jiang ◽  
Chuanping Zhou ◽  
Zhixian Yang ◽  
Zhi Sun ◽  
Huawei Ji ◽  
...  

Based on the non-Fourier heat conduction wave model, the thermal wave scattering near the opening in the platinum–rhodium glass fiber leaky plate structure is studied by using complex function method and conformal mapping method, and the general solution of the thermal wave scattering problem is given. The boundary condition of the open surface is adiabatic. The influence of the geometrical and physical parameters of the leaky plate on the temperature distribution in the plate is analyzed, and the numerical results of the temperature concentration are given. This study can provide theoretical basis and reference data for the design and optimization of the opening structure of platinum–rhodium glass fiber leaky plate.


Author(s):  
F. Beaudoin ◽  
P. Perdu ◽  
C. DeNardi ◽  
R. Desplats ◽  
J. Lopez ◽  
...  

Abstract Ultra-short pulse laser ablation is applied to IC backside sample preparation. It is contact-less, non-thermal, precise and can ablate the various types of material present in IC packages. This study concerns the optimization of ultra-short pulse laser ablation for silicon thinning. Uncontrolled silicon roughness and poor uniformity of the laser thinned cavity needed to be tackled. Special care is taken to minimize the silicon RMS roughness to less than 1µm. Application to sample preparation of 256Mbit devices is presented.


2021 ◽  
Author(s):  
Bo Liu ◽  
Luanying Yang ◽  
Gang Wang ◽  
Sha He ◽  
Xiaobo Wang ◽  
...  

A simple and low-cost electrochemical CEA immunosensor was investigated via the self-polymerization of dopamine and a dithiol compound spacer for the covalent immobilization of antibodies. The designed CEA immunosensor exhibited a linear response and a low detection limit.


Sign in / Sign up

Export Citation Format

Share Document