scholarly journals A Monitoring System for Integrated Management of IoT-based Home Network

Author(s):  
Changsu Ryu ◽  
Chang-Wu Hur

Recently, the society is rapidly becoming highly integrated with the convergence of smart devices, SNS, big data, cloud, and IoT. This phenomenon is being spread more swiftly based on the wired and wireless communication infrastructure provided to most homes, as terminal devices for communication have more various functions and are being supplied to homes through a multi-vendor system and as several terminal devices are installed in each home to provide services. Particularly, various IoT terminal devices and services are being introduced to facilitate functions such as home crime prevention, gas valve control, control of electric apparatus and temperature-humidity sensors, and door control based on facial recognition, and integrated IoT-based management monitoring is required for TVs, washing machines, refrigerators, etc. Hence, in this study, a monitoring system for integrated home network management and data collection management, which solves problems of existing home network systems by connecting API Adaptor connection technology, message technology for integrated management of universal communications terminal devices and IoT devices, and data modelling technology to individual network platforms, was proposed.

Author(s):  
Changsu Ryu ◽  
Chang-Wu Hur

Recently, the society is rapidly becoming highly integrated with the convergence of smart devices, SNS, big data, cloud, and IoT. This phenomenon is being spread more swiftly based on the wired and wireless communication infrastructure provided to most homes, as terminal devices for communication have more various functions and are being supplied to homes through a multi-vendor system and as several terminal devices are installed in each home to provide services. Particularly, various IoT terminal devices and services are being introduced to facilitate functions such as home crime prevention, gas valve control, control of electric apparatus and temperature-humidity sensors, and door control based on facial recognition, and integrated IoT-based management monitoring is required for TVs, washing machines, refrigerators, etc. Hence, in this study, a monitoring system for integrated home network management and data collection management, which solves problems of existing home network systems by connecting API Adaptor connection technology, message technology for integrated management of universal communications terminal devices and IoT devices, and data modelling technology to individual network platforms, was proposed.


2018 ◽  
Vol 10 (3) ◽  
pp. 61-83 ◽  
Author(s):  
Deepali Chaudhary ◽  
Kriti Bhushan ◽  
B.B. Gupta

This article describes how cloud computing has emerged as a strong competitor against traditional IT platforms by offering low-cost and “pay-as-you-go” computing potential and on-demand provisioning of services. Governments, as well as organizations, have migrated their entire or most of the IT infrastructure to the cloud. With the emergence of IoT devices and big data, the amount of data forwarded to the cloud has increased to a huge extent. Therefore, the paradigm of cloud computing is no longer sufficient. Furthermore, with the growth of demand for IoT solutions in organizations, it has become essential to process data quickly, substantially and on-site. Hence, Fog computing is introduced to overcome these drawbacks of cloud computing by bringing intelligence to the edge of the network using smart devices. One major security issue related to the cloud is the DDoS attack. This article discusses in detail about the DDoS attack, cloud computing, fog computing, how DDoS affect cloud environment and how fog computing can be used in a cloud environment to solve a variety of problems.


2022 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Njabulo Sakhile Mtetwa ◽  
Paul Tarwireyi ◽  
Cecilia Nombuso Sibeko ◽  
Adnan Abu-Mahfouz ◽  
Matthew Adigun

The Internet of Things (IoT) is changing the way consumers, businesses, and governments interact with the physical and cyber worlds. More often than not, IoT devices are designed for specific functional requirements or use cases without paying too much attention to security. Consequently, attackers usually compromise IoT devices with lax security to retrieve sensitive information such as encryption keys, user passwords, and sensitive URLs. Moreover, expanding IoT use cases and the exponential growth in connected smart devices significantly widen the attack surface. Despite efforts to deal with security problems, the security of IoT devices and the privacy of the data they collect and process are still areas of concern in research. Whenever vulnerabilities are discovered, device manufacturers are expected to release patches or new firmware to fix the vulnerabilities. There is a need to prioritize firmware attacks, because they enable the most high-impact threats that go beyond what is possible with traditional attacks. In IoT, delivering and deploying new firmware securely to affected devices remains a challenge. This study aims to develop a security model that employs Blockchain and the InterPlanentary File System (IPFS) to secure firmware transmission over a low data rate, constrained Long-Range Wide Area Network (LoRaWAN). The proposed security model ensures integrity, confidentiality, availability, and authentication and focuses on resource-constrained low-powered devices. To demonstrate the utility and applicability of the proposed model, a proof of concept was implemented and evaluated using low-powered devices. The experimental results show that the proposed model is feasible for constrained and low-powered LoRaWAN devices.


Author(s):  
Sowmya G

Abstract: The increased use of smart phones and smart devices in the health zone has brought on extraordinary effect on the world’s critical care. The Internet of things is progressively permitting to coordinate sensors fit for associating with the Internet and give data on the health condition of patients. These technologies create an amazing change in medicinal services during pandemics. Likewise, many users are beneficiaries of the M-Health (Mobile Health) applications and E-Health (social insurance upheld by ICT) to enhance, help and assist continuously to specialists who help. The main aim of this ‘IOT Health Monitoring System’ is to build up a system fit for observing vital body signs such as body temperature, heart rate, pulse oximetry etc. The System is additionally equipped measuring Room Temperature and Humidity and Atmosphere CO level. To accomplish this, the system involves many sensors to display vital signs that can be interfaced to the doctor’s smart phone as well as caretakers’ smartphone. This prototype will upload the readings from the sensor to a server remotely and the information gathered will be accessible for analysis progressively. It has the capacity of reading and transmitting vital parameters measured to the cloud server and then to any Smartphone configured with Blynk App. These readings can be utilized to recognize the health state of the patient and necessary actions can be taken if the vital parameters are not in prescribed limits for a longer period. Keywords: IOT Health Monitoring System, Vital parameters, Blynk App


Author(s):  
Tanweer Alam

In next-generation computing, the role of cloud, internet and smart devices will be capacious. Nowadays we all are familiar with the word smart. This word is used a number of times in our daily life. The Internet of Things (IoT) will produce remarkable different kinds of information from different resources. It can store big data in the cloud. The fog computing acts as an interface between cloud and IoT. The extension of fog in this framework works on physical things under IoT. The IoT devices are called fog nodes, they can have accessed anywhere within the range of the network. The blockchain is a novel approach to record the transactions in a sequence securely. Developing a new blockchains based middleware framework in the architecture of the Internet of Things is one of the critical issues of wireless networking where resolving such an issue would result in constant growth in the use and popularity of IoT. The proposed research creates a framework for providing the middleware framework in the internet of smart devices network for the internet of things using blockchains technology. Our main contribution links a new study that integrates blockchains to the Internet of things and provides communication security to the internet of smart devices.


2016 ◽  
Vol 3 (2) ◽  
pp. 75-82 ◽  
Author(s):  
Naresh Babu Bynagari

‘Industrial application of Internet of Things deals with the application of Internet of things to produce industrial services. It analyzed how industries can carry out multiple services with function remotely using IoT-connected devices. The several benefits and drawbacks to the application of IoT services were also investigated. The IoT is a network of connected systems and smart devices that use encoded networks like sensors, processors, and interactive hardware to receive, send and store data. The utilization of IoT for industrial functions will significantly improve industrial output, and in the future, more industries will come to apply IoT devices and systems for greater efficiency.  


2008 ◽  
Vol 5 (1) ◽  
pp. 82-98 ◽  
Author(s):  
Masahide Nakamura ◽  
Akihiro Tanaka ◽  
Hiroshi Igaki ◽  
Haruaki Tamada ◽  
Ken-ichi Matsumoto

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5528
Author(s):  
Hassan Elahi ◽  
Khushboo Munir ◽  
Marco Eugeni ◽  
Sofiane Atek ◽  
Paolo Gaudenzi

The internet of things (IoT) manages a large infrastructure of web-enabled smart devices, small devices that use embedded systems, such as processors, sensors, and communication hardware to collect, send, and elaborate on data acquired from their environment. Thus, from a practical point of view, such devices are composed of power-efficient storage, scalable, and lightweight nodes needing power and batteries to operate. From the above reason, it appears clear that energy harvesting plays an important role in increasing the efficiency and lifetime of IoT devices. Moreover, from acquiring energy by the surrounding operational environment, energy harvesting is important to make the IoT device network more sustainable from the environmental point of view. Different state-of-the-art energy harvesters based on mechanical, aeroelastic, wind, solar, radiofrequency, and pyroelectric mechanisms are discussed in this review article. To reduce the power consumption of the batteries, a vital role is played by power management integrated circuits (PMICs), which help to enhance the system’s life span. Moreover, PMICs from different manufacturers that provide power management to IoT devices have been discussed in this paper. Furthermore, the energy harvesting networks can expose themselves to prominent security issues putting the secrecy of the system to risk. These possible attacks are also discussed in this review article.


2020 ◽  
Vol 1 (2) ◽  
pp. 1-12
Author(s):  
Ritu Chauhan ◽  
Gatha Tanwar

The internet of things has brought in innovations in the daily lives of users. The enthusiasm and openness of consumers have fuelled the manufacturers to dish out new devices with more features and better aesthetics. In an attempt to keep up with the competition, the manufacturers are not paying enough attention to cyber security of these smart devices. The gravity of security vulnerabilities is further aggravated due to their connected nature. As a result, a compromised device would not only stop providing the intended service but could also act as a host for malware introduced by an attacker. This study has focused on 10 manufacturers, namely Fitbit, D-Link, Edimax, Ednet, Homematic, Smarter, Osram, Belkin Wemo, Philips Hue, and Withings. The authors studied the security issues which have been raised in the past and the communication protocols used by devices made by these brands. It was found that while security vulnerabilities could be introduced due to lack of attention to details while designing an IoT device, they could also get introduced by the protocol stack and inadequate system configuration. Researchers have iterated that protocols like TCP, UDP, and mDNS have inherent security shortcomings and manufacturers need to be mindful of the fact. Furthermore, if protocols like EAPOL or Zigbee have been used, then the device developers need to be aware of safeguarding the keys and other authentication mechanisms. The authors also analysed the packets captured during setup of 23 devices by the above-mentioned manufacturers. The analysis gave insight into the underlying protocol stack preferred by the manufacturers. In addition, they also used count vectorizer to tokenize the protocols used during device setup and use them to model a multinomial classifier to identify the manufacturers. The intent of this experiment was to determine if a manufacturer could be identified based on the tokenized protocols. The modelled classifier could then be used to drive an algorithm to checklist against possible security vulnerabilities, which are characteristic of the protocols and the manufacturer history. Such an automated system will be instrumental in regular diagnostics of a smart system. The authors then wrapped up this report by suggesting some measures a user can take to protect their local networks and connected devices.


2012 ◽  
Vol 482-484 ◽  
pp. 2315-2321
Author(s):  
Chao Hua Ao ◽  
Xiao Yi Yang

Aimed at the puzzle of data integration share resulted from its diversity and privacy of protocols in the monitoring system for gas stations in China, the paper designed a monitoring system of gas stations in retail network for oil products. Based on the embedded dynamic Web, it constructed the system frame, built the software system structure, researched the protocol conversion among the forecourt equipments and the module of IFSF, designed message transmission module of IFSF protocol on TCP/IP based on Ethernet, and realized the integrated management between gas stations equipment and system monitoring. The basic experiments based on embedded dynamic Web were made, and it could complete telnet monitoring, parameter configuration, data auto-transmission and auto-upload as well as management of gas stations information. The actual experiment demonstrates its rationality and feasibility of the proposed solution.


Sign in / Sign up

Export Citation Format

Share Document