Issues in Routing Mechanism for Packets Forwarding: A Survey

Author(s):  
Rohit Nilkanth Devikar ◽  
Dipak V. Patil ◽  
V. Chandraprakash

Nowadays internet has become more popular to each and every one. It is very sensitive to nodes or links failure due to many known or unknown issues in the network connectivity. Routing is the important concept in wired and wireless network for packet transmission. During the packet transmission many times some of the problems occur, due to this packets are being lost or nodes not able to transmit the packets to the specific destination. This paper discusses various issues and approaches related to the routing mechanism. In this paper, we present a review and comparison of different routing algorithms and protocols proposed recently in order to address various issues. The main purpose of this study is to address issues for packet forwarding like network control management, load balancing, congestion control, convergence time and instability. We also focus on the impact of these issues on packet forwarding.

Author(s):  
Rohit Nilkanth Devikar ◽  
Dipak V. Patil ◽  
V. Chandraprakash

Nowadays internet has become more popular to each and every one. It is very sensitive to nodes or links failure due to many known or unknown issues in the network connectivity. Routing is the important concept in wired and wireless network for packet transmission. During the packet transmission many times some of the problems occur, due to this packets are being lost or nodes not able to transmit the packets to the specific destination. This paper discusses various issues and approaches related to the routing mechanism. In this paper, we present a review and comparison of different routing algorithms and protocols proposed recently in order to address various issues. The main purpose of this study is to address issues for packet forwarding like network control management, load balancing, congestion control, convergence time and instability. We also focus on the impact of these issues on packet forwarding.


In this paper, we study about Software Defined Networking (SDN) is centralized controller of the network. It has maintained the information regarding the whole network which being able to optimize the available network resources and makes the route decision for forward packets. In Traditional networks, each device possess with own configuration and state which makes difficult to networking and expensive to maintain and forward packets. It also uses multiple routing algorithms for many different devices such as routers and switches and no centralized approach for routing. SDN architecture is centralized and support different routing algorithms for packet forwarding in emerging changes in networks. SDN usage is rapidly increased in networking to meet today challenges. This paper discuss on SDN with Wireless Sensor Network for load balancing between the nodes in communication. Due to Mobility of node in Wireless sensor network need of load balance .Also discussed various issues related with SDN performance in wireless sensor Network.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4368
Author(s):  
Jitander Kumar Pabani ◽  
Miguel-Ángel Luque-Nieto ◽  
Waheeduddin Hyder ◽  
Pablo Otero

Underwater Wireless Sensor Networks (UWSNs) are subjected to a multitude of real-life challenges. Maintaining adequate power consumption is one of the critical ones, for obvious reasons. This includes proper energy consumption due to nodes close to and far from the sink node (gateway), which affect the overall energy efficiency of the system. These wireless sensors gather and route the data to the onshore base station through the gateway at the sea surface. However, finding an optimum and efficient path from the source node to the gateway is a challenging task. The common reasons for the loss of energy in existing routing protocols for underwater are (1) a node shut down due to battery drainage, (2) packet loss or packet collision which causes re-transmission and hence affects the performance of the system, and (3) inappropriate selection of sensor node for forwarding data. To address these issues, an energy efficient packet forwarding scheme using fuzzy logic is proposed in this work. The proposed protocol uses three metrics: number of hops to reach the gateway node, number of neighbors (in the transmission range of a node) and the distance (or its equivalent received signal strength indicator, RSSI) in a 3D UWSN architecture. In addition, the performance of the system is also tested with adaptive and non-adaptive transmission ranges and scalable number of nodes to see the impact on energy consumption and number of hops. Simulation results show that the proposed protocol performs better than other existing techniques or in terms of parameters used in this scheme.


2020 ◽  
Vol 11 (1) ◽  
pp. 104
Author(s):  
Peipei Dai ◽  
Jianping Xing ◽  
Yulong Ge ◽  
Xuhai Yang ◽  
Weijin Qin ◽  
...  

The timing group delay parameter (TGD) or differential code bias parameter (DCB) is an important factor that affects the performance of GNSS basic services; therefore, TGD and DCB must be taken seriously. Moreover, the TGD parameter is modulated in the navigation message, taking into account the impact of TGD on the performance of the basic service. International GNSS Monitoring and Assessment System (iGMAS) provides the broadcast ephemeris with TGD parameter and the Chinese Academy of Science (CAS) provides DCB products. In this paper, the current available BDS-3 TGD and DCB parameters are firstly described in detail, and the relationship of TGD and DCB for BDS-3 is figured out. Then, correction models of BDS-3 TGD and DCB in standard point positioning (SPP) or precise point positioning (PPP) are given, which can be applied in various situations. For the effects of TGD and DCB in the SPP and PPP solution processes, all the signals from BDS-3 were researched, and the validity of TGD and DCB has been further verified. The experimental results show that the accuracy of B1I, B1C and B2a single-frequency SPP with TGD or DCB correction was improved by approximately 12–60%. TGD will not be considered for B3I single-frequency, because the broadcast satellite clock offset is based on the B3I as the reference signal. The positioning accuracy of B1I/B3I and B1C/B2a dual-frequency SPP showed that the improvement range for horizontal components is 60.2% to 74.4%, and the vertical components improved by about 50% after the modification of TGD and DCB. In addition, most of the uncorrected code biases are mostly absorbed into the receiver clock bias and other parameters for PPP, resulting in longer convergence time. The convergence time can be max increased by up to 50% when the DCB parameters are corrected. Consequently, the positioning accuracy can reach the centimeter level after convergence, but it is critical for PPP convergence time and receiver clock bias that the TGD and DCB correction be considered seriously.


2018 ◽  
Vol 7 (2.23) ◽  
pp. 59 ◽  
Author(s):  
Surinder Singh ◽  
Hardeep Singh Saini

The wireless sensor network has group of sensors which can sense the data and route this data to base station. As there is no physical connection between sensor and base station the important data can be routed without wires. The broadcast nature of wireless sensor network makes it prone to security threat to the valuable data. The attacker node can detect the data by creating their own data aggregation and routing mechanism .The number of attacks can be possible on the network layer. Out of these attacks wormhole is one of the major attack which can change the routing method of the whole wireless sensor network. In this attack,the attacker node can control the packet transmission of whole network and route it to the tunnel of nodes. The major drawback of this attack is to increase the packet drop and disturbing the routing mechanism. A number of security techniques are developed by the researcher to reduce the packet drop ratio and secure the routing mechanism of the network. Out of all thesetechniquesfew related to packet drop ratio are discussed in this paper. TheLightweight countermeasure for the wormhole attack (LITEWORP) based on Dynamic Source routing (DSR) protocol security technique,Delay Per Hop Indication (Delphi) based on AODV(Avoidance Routing Protocol) Protocol security technique and MOBIWORP based on DSRprotocol security technique reduce the packet loss percentage 40%,43% and 35% respectively.   


2020 ◽  
Vol 650 ◽  
pp. 309-326
Author(s):  
A Ospina-Alvarez ◽  
S de Juan ◽  
J Alós ◽  
G Basterretxea ◽  
A Alonso-Fernández ◽  
...  

Despite the recognised effectiveness of networks of marine protected areas (MPAs) as a biodiversity conservation instrument, MPA network design frequently disregards the importance of connectivity patterns. In the case of sedentary marine populations, connectivity stems not only from the stochastic nature of the physical environment that affects dispersal of early life stages, but also from the spawning stock attributes that affect reproductive output (e.g. passive eggs and larvae) and survivorship. Early life stages are virtually impossible to track in the ocean. Therefore, numerical ocean current simulations coupled with egg and larval Lagrangian transport models remain the most common approach for the assessment of marine larval connectivity. Inferred larval connectivity may differ depending on the type of connectivity considered; consequently, the prioritisation of sites for the conservation of marine populations might also differ. Here, we introduce a framework for evaluating and designing MPA networks based on the identification of connectivity hotspots using graph theoretic analysis. As a case study, we used a network of open-access areas and MPAs off Mallorca Island (Spain), and tested its effectiveness for the protection of the painted comber Serranus scriba. Outputs from network analysis were used to (1) identify critical areas for improving overall larval connectivity, (2) assess the impact of species’ biological parameters in network connectivity and (3) explore alternative MPA configurations to improve average network connectivity. Results demonstrate the potential of graph theory to identify non-trivial egg/larval dispersal patterns and emerging collective properties of the MPA network, which are relevant for increasing protection efficiency.


2021 ◽  
Vol 15 ◽  
Author(s):  
Cong Fu ◽  
Aikedan Aisikaer ◽  
Zhijuan Chen ◽  
Qing Yu ◽  
Jianzhong Yin ◽  
...  

A core feature of drug-resistant epilepsy is hyperexcitability in the motor cortex, and low-frequency repetitive transcranial magnetic stimulation (rTMS) is a suitable treatment for seizures. However, the antiepileptic effect causing network reorganization has rarely been studied. Here, we assessed the impact of rTMS on functional network connectivity (FNC) in resting functional networks (RSNs) and their relation to treatment response. Fourteen patients with medically intractable epilepsy received inhibitive rTMS with a figure-of-eight coil over the vertex for 10 days spread across two weeks. We designed a 6-week follow-up phase divided into four time points to investigate FNC and rTMS-induced timing-dependent plasticity, such as seizure frequency and abnormal interictal discharges on electroencephalography (EEG). For psychiatric comorbidities, the Hamilton Depression Scale (HAM-D) and the Hamilton Anxiety Scale (HAM-A) were applied to measure depression and anxiety before and after rTMS. FNC was also compared to that of a cohort of 17 healthy control subjects. The after-effects of rTMS included all subjects that achieved the significant decrease rate of more than 50% in interictal epileptiform discharges and seizure frequency, 12 (14) patients with the reduction rate above 50% compared to the baseline, as well as emotional improvements in depression and anxiety (p < 0.05). In the analysis of RSNs, we found a higher synchronization between the sensorimotor network (SMN) and posterior default-mode network (pDMN) in epileptic patients than in healthy controls. In contrast to pre-rTMS, the results demonstrated a weaker FNC between the anterior DMN (aDMN) and SMN after rTMS, while the FNC between the aDMN and dorsal attention network (DAN) was greater (p < 0.05, FDR corrected). Importantly, the depressive score was anticorrelated with the FNC of the aDMN-SMN (r = −0.67, p = 0.0022), which was markedly different in the good and bad response groups treated with rTMS (p = 0.0115). Based on the vertex suppression by rTMS, it is possible to achieve temporary clinical efficacy by modulating network reorganization in the DMN and SMN for patients with refractory epilepsy.


1970 ◽  
Vol 5 (1) ◽  
Author(s):  
Shariq Haseeb Khairul Azami Sidek Ahmad Faris Ismail, Lai W.K. ◽  
Aw Yit Mei

Successful implementation and operation of a network largely depends on the routing algorithm in use. To date, several routing algorithms are in use but the problem with these algorithms is that they are either not adaptive or not robust enough, thus limiting the proper use of bandwidth.  AntNet is an innovative algorithm that may be used for data networks. It is a combination of both static and dynamic routing algorithms. In this algorithm, a group of mobile agents (compared to real ants) form paths between source and destination nodes. They explore the network continuously and exchange obtained information indirectly, in order to update the routing tables at different nodes. Our version of AntNet (hereinafter referred to as AntNet2.0) has been improved to overcome the problems with other algorithms. This paper compares the performance of AntNet2.0 against two other commercially popular algorithms, viz. link state routing algorithm and distant vector routing algorithm. The performance matrix used to compare the algorithms is based on average throughput, packet loss, packet drop and end-to-end delay. Convergence time for this algorithm on a nation-wide telecommunications network will also be discussed. Conclusions and areas of further work will also be presented in lucid manner, so that it may be transformed into real practice in the future.Key Words: mobile agents, swarm intelligence, networks and constant bit rate


2018 ◽  
Vol 22 (3) ◽  
pp. 277-295 ◽  
Author(s):  
Aaron C. Poole ◽  
James C. McCutcheon ◽  
Kayla Toohy ◽  
Bert Burraston

Increased road network connectivity has been linked to more positive outcomes among all health outcomes. Road network connectivity has yet to be tested in association with specifically criminal lethality. The current study looks to incorporate road network connectivity as an explanatory variable for criminal lethality. Data on Road Network Connectivity and Criminal Lethality are gathered for 190 cities. Data sources include the National Incident-Based Reporting System (NIBRS), 2010 Census, 2010 American Community Survey, Google Earth, and Census Topologically Integrated Geographic Encoding and Referencing (TIGER) files. The data demonstrate that a city’s road network connectivity is related to decreases in the rates of lethality among assaults. Implications of this finding are discussed.


Author(s):  
Marcello Cinque ◽  
Catello Di Martino

Recent years have witnessed a proliferation of routing algorithms for Wireless Sensor Networks (WSNs), hence complicating the choice of the proper algorithm to be used for a given application. Simulation frameworks represent a viable solution to anticipate crucial choices, however existing solutions do not encompass the impact of changes (e.g., route updates, node crashes) on the nodes behavior and vice-versa. This article proposes a novel adaptive modeling approach to master the complexity of the thorough simulation of routing algorithms for WSN. Experimental results are provided showing the effectiveness of the proposed approach at managing changes, and dealing with detailed aspects, during the simulation and comparison of several routing algorithms.


Sign in / Sign up

Export Citation Format

Share Document