scholarly journals Modified Ultra Wideband (UWB) Antipodal Vivaldi Antenna for 5

Author(s):  
Subuh Pramono ◽  
Budi Basuki S. ◽  
Tommi Hariyadi

<p>This paper presents a half triangular Comb-shaped slits edge Antipodal Vivaldi Antenna (Comb-AVA) as compared to the conventional Antipodal Vivaldi Antenna (AVA) design. This proposed antenna covers 20-40 GHz spectrum. This Comb-AVA antenna is designed for the 5G application which is addressed to cover a dualband 28/38 GHz frequencies. A half triangular comb-shaped slits edge structure is employed to investigate its effects on antenna parameters. This proposed Comb-AVA occupies a 25x8 mm2 of FR 4 substrate (𝜀𝛾 = 4.4, tan δ=0.02, thinkness 1.6 mm). It has impedance bandwidth (S11≤-10 dB) along 20-40 GHz spectrum and fractional bandwidth (FBW) ≥0.5. It means that the bandwidth is categorized as ultra wideband (UWB). In addition, there is 11 dB refinement of return loss in the CombAVA design at 38 GHz frequency. VSWR value is in range of 1.054 to 1.396. This proposed antena also has a wider angular width (3 dB) than the AVA. Higher directivity and gain is generated by Comb-AVA at 28 GHz. This proposed antenna has good performances and suitable for 5G application. </p>

2018 ◽  
Vol 7 (2.8) ◽  
pp. 529 ◽  
Author(s):  
Ch Ramakrishna ◽  
G A.E.Satish Kumar ◽  
P Chandra Sekhar Reddy

This paper presents a band notched WLAN self complementaryultra wide band antenna for wireless applications. The proposed antenna encounters a return loss (RL) less than -10dB for entire ultra wideband frequency range except band notched frequency. This paper proposes a hexagon shape patch, edge feeding, self complementary technique and defective ground structure. The antenna has an overall dimensionof 28.3mm × 40mm × 2mm, builton  substrate FR4 with a relative dielectric permittivity 4.4. And framework is simulated finite element method with help of high frequency structured simulator HFSSv17.2.the proposed antenna achieves a impedance bandwidth of 8.6GHz,  band rejected WLAN frequency range 5.6-6.5 GHz with  vswr is less than 2.


2020 ◽  
Vol 8 (5) ◽  
pp. 3988-3990

In this paper, A coplanar waveguide (CPW) ultra-wideband(UWB) antenna is designed, analyzed and simulated by computer simulation technology(CST). The proposed antenna is fabricated on FR-4 dielectric substrate. A microstrip feed line is used to excite the antenna.The ground plane is slotted to improve the impedance bandwidth (BW). Here, a rectangular patch is used as radiator and two corners out of four are truncated to improve impedance matching and UWB characterization.This antenna satisfies UWB characteristics like VSWR<2, Return loss(S11)<-10 dB,Gain<5dB and the antenna is operating within the frequency range of 1.59 to 11.87 GHz range which covers whole ultra wideband i.e. 3.1 to 10.6 GHz range.


Author(s):  
Djalal Ziani Kerarti ◽  
Fatima Zahra Marouf

Background & Objective: In this paper, a simple design of antipodal Vivaldi antenna for ultra-wideband Radar applications is presented. Methods: The antenna provided to operate across the entire UWB spectrum sins it covers a very wide frequency band from 2.43 up to 13 GHz with better return loss characteristics. In addition, the antenna offers high and flat gain in this band. The numerical designs of the antennas have been performed by using the commercially available software CST MW, which it’s printed on Taconic substrate with a dielectric constant of 4.5 and thickness 1.6 mm. Results and Conclusion: The antenna has a compact dimension of 40 × 50 mm2 achieve satisfactory impedance matching and radiation efficiency.


2017 ◽  
Vol 9 (9) ◽  
pp. 1821-1826 ◽  
Author(s):  
Dharmendra Kumar Jhariya ◽  
Akhilesh Mohan ◽  
Manoranjan Sinha

In this paper, a novel two-stage fish spear-shaped multimode resonator (MMR)-based ultra wideband (UWB) bandpass filter (BPF) is presented. The fish spear-shaped MMR is loaded with stepped impedance resonator in order to improve the out-of-band performance of the proposed filter. The proposed UWB BPF filter has fractional bandwidth better than 110%. In order to validate the present design approach, the filter is fabricated on RT/Duroid 5880 having dielectric constant 2.2, thickness 0.787 mm and loss tangent of 0.0009. The measured passband bandwidth of the filter is from 3.3 to 11.85 GHz, with insertion loss of 1.5 dB and return loss better than 12 dB in the passband. The proposed filter has sharp selectivity and upper stopband with 20 dB attenuation from 12 to 24 GHz.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Mohammad Mahdi Honari ◽  
Mohammad Saeid Ghaffarian ◽  
Rashid Mirzavand

In this paper, a miniaturized ultra-wideband antipodal tapered slot antenna with exponential strip arms is presented. Two exponential arms with designed equations are optimized to reduce the lower edge cut-off frequency of the impedance bandwidth from 1480 MHz to 720 MHz, resulting in antenna miniaturization by 51%. This approach also improves antenna bandwidth without compromising the radiation characteristics. The dimension of the proposed antenna structure including the feeding line and transition is 158 × 125 × 1 mm3. The results show that a peak gain more than 1 dBi is achieved all over the impedance bandwidth (0.72–17 GHz), which is an improvement to what have been reported for antipodal tapered slot and Vivaldi antennas with similar size.


2015 ◽  
Vol 77 (10) ◽  
Author(s):  
Raimi Dewan ◽  
Mohamad Kamal A Rahim ◽  
Mohamad Rijal Hamid ◽  
M.H. Mokhtar ◽  
M.F.M. Yusoff

In this paper, an Ultra Wideband (UWB) antenna is presented. The antenna radiating patch is circular in shape with coplanar waveguide (CPW) feeding technique. The proposed chamfering to the outer edges of the ground plane successfully widens the -10 dB impedance bandwidth of the antenna to cover from 1.92 GHz up to 15.16 GHz (correspond to 155% fractional bandwidth). The antenna gain varies from 2 to 5 dB over the operating band. Parametrical studies have been conducted for four different conditions of the ground plane; without chamfering, chamfering on the inner edges, chamfering on the outer edges and both chamfering of inner and outer edges. The effects of distinguished chamfering conditions to antenna performance are analyzed.  The measured and simulated results for reflection coefficients and radiation patterns (2.45 GHz, 3.5 GHz and 5.8 GHz) are presented. The corresponding realized gains are 2.14 dB, 2.85 dB and 3.4 dB respectively. The measured results satisfactorily agreed with the simulated ones. The antenna is 8 - 37 % wider bandwidth than previous research.


Author(s):  
Arnab De ◽  
Bappadittya Roy ◽  
Ankan Bhattacharya ◽  
A. K. Bhattacharjee

Abstract In this article a compact circular monopole antenna is represented with dimensions of 38.87 × 24.00 × 1.60 mm3 applicable for WLAN/Wi-MAX and satellite band rejection characteristics. The impedance bandwidth is 9.42 GHz (3.12–12.54 GHz) for the final antenna with an equivalent fractional bandwidth of about 120.31%, producing triple notched bands centered at 3.95, 5.20 and 8.90 GHz with assistance of Archimedean spiral slot and incorporation of defected ground structure allowing WLAN (5.2 GHz), WiMAX (3.5 GHz) and higher satellite X-band (8.5 GHz) filtering abilities. Simulations of the antenna are performed to attain preferable return loss properties as well as gain and omni-directional radiation patterns. The suggested antenna yields a peak gain of about 7.46 dBi at 11.30 GHz and experimental values are in good obedience with simulated ones.


In this paper, an interdigital coupled microstrip bandpass filter incorporated with shorted stub multi-mode resonator at ultra-wideband spectrum is presented. Proposed filter is characterized by its ultra compactness achieved through multi-mode resonator. The proposed filter is incorporated with interdigitated transmission line based on Lange Coupler topology. This structure enhances capacitive coupling between feed line and MMR which improves lower frequency selectivity of BPF. The parameters viz. fractional bandwidth of 105%, return loss above 20 dB and insertion loss below 1 dB at centre frequency of 4.875 GHz are recorded. The bandwidth of the filter is measured to be 5.15 GHz (2.3 to 7.45 GHz). The filter shows good linearity with its group delay recorded 0.2 ns with small variations of 0.1 ns at maximum in its passband. The compactness of proposed filter makes it suitable for various modern wireless applications.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2113
Author(s):  
Wahaj Abbas Awan ◽  
Abir Zaidi ◽  
Musa Hussain ◽  
Niamat Hussain ◽  
Ikram Syed

This paper presents the design and realization of a compact printed ultra-wideband (UWB) antenna with notching characteristics for compact devices using a genetic algorithm. The antenna is capable of mitigating an adjacent sub-band ranging from 3.75 to 4.875 GHz, mainly used by many applications and standards such as WiMAX, WLAN and sub-6-GHz. The notch band functionality is achieved by etching out two symmetrical slots from the pentagonal radiating element. The simulation and measured results demonstrate that the proposed antenna overperformed compared with state-of-the-art antennas in terms of compactness with an overall size of 20 mm×15 mm×0.508 mm. Moreover, the proposed design shows a large bandwidth in the UWB region with a fractional bandwidth of 180% with respect to the center frequency of 5.25 GHz. The antenna also presents omnidirectional radiations all over the operation band and a good return loss performance.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 453
Author(s):  
Sharadindu Gopal Kirtania ◽  
Bachir Adham Younes ◽  
Abdul Rakib Hossain ◽  
Tutku Karacolak ◽  
Praveen Kumar Sekhar

In this article, an inkjet-printed circular-shaped monopole ultra-wideband (UWB) antenna with an inside-cut feed structure was implemented on a flexible polyethylene terephthalate (PET) substrate. The coplanar waveguide (CPW)-fed antenna was designed using ANSYS high-frequency structural simulator (HFSS), which operates at 3.04–10.70 GHz and 15.18–18 GHz (upper Ku band) with a return loss < −10 dB and a VSWR < 2. The antenna, with the dimensions of 47 mm × 25 mm × 0.135 mm, exhibited omnidirectional radiation characteristics over the entire impedance bandwidth, with an average peak gain of 3.94 dBi. The simulated antenna structure was in good agreement with the experiment’s measured results under flat and bending conditions, making it conducive for flexible and wearable Internet of things (IoT) applications.


Sign in / Sign up

Export Citation Format

Share Document