scholarly journals Multimodal access control system combining RFID, fingerprint and facial recognition

Author(s):  
Mohamed El Beqqal ◽  
Mostafa Azizi ◽  
Jean Louis Lanet

<span>Monomodal biometry does not constitute an effective measure to meet the desired performance requirements for large-scale applications, due to limita-tions such as noisy data, restricted degree of freedom and unacceptable error rates. Some of these problems can be solved through multimodal biometric systems that involve using a combination of two or more biometric modali-ties in a single identification system. Identification based on multiple biomet-rics represents an emerging trend. The reason for combining different modal-ities is to improve the recognition rate. In practice, multi-biometric aims to reduce the False Acceptance Ratio (FAR) and False Rejection Ratio (FRR) which are two standard metrics widely used in the accuracy of biometric sys-tems. In this paper, we will examine the different possible scenario in multi-modal biometric systems using RFID, fingerprint and facial recognition, that can be adopted to merge information and improve the overall accuracy of the system.</span>

2020 ◽  
Vol 75 (11) ◽  
pp. 3099-3108
Author(s):  
Norhan Mahfouz ◽  
Inês Ferreira ◽  
Stephan Beisken ◽  
Arndt von Haeseler ◽  
Andreas E Posch

Abstract Background Antimicrobial resistance (AMR) is a rising health threat with 10 million annual casualties estimated by 2050. Appropriate treatment of infectious diseases with the right antibiotics reduces the spread of antibiotic resistance. Today, clinical practice relies on molecular and PCR techniques for pathogen identification and culture-based antibiotic susceptibility testing (AST). Recently, WGS has started to transform clinical microbiology, enabling prediction of resistance phenotypes from genotypes and allowing for more informed treatment decisions. WGS-based AST (WGS-AST) depends on the detection of AMR markers in sequenced isolates and therefore requires AMR reference databases. The completeness and quality of these databases are material to increase WGS-AST performance. Methods We present a systematic evaluation of the performance of publicly available AMR marker databases for resistance prediction on clinical isolates. We used the public databases CARD and ResFinder with a final dataset of 2587 isolates across five clinically relevant pathogens from PATRIC and NDARO, public repositories of antibiotic-resistant bacterial isolates. Results CARD and ResFinder WGS-AST performance had an overall balanced accuracy of 0.52 (±0.12) and 0.66 (±0.18), respectively. Major error rates were higher in CARD (42.68%) than ResFinder (25.06%). However, CARD showed almost no very major errors (1.17%) compared with ResFinder (4.42%). Conclusions We show that AMR databases need further expansion, improved marker annotations per antibiotic rather than per antibiotic class and validated multivariate marker panels to achieve clinical utility, e.g. in order to meet performance requirements such as provided by the FDA for clinical microbiology diagnostic testing.


Biometric recognition systems use certain human characteristics such as voice, facial features, fingerprint, iris or hand geometry to identify an individual or verify their identity. These systems have been developed individually for each of these biometric modalities until they achieve remarkable levels of performance. Biometrics is a measure of biological characteristics for the identification or authentication of an individual based on some of its characteristics. Although biometric recognition techniques promise to be very effective, At present, we can not guarantee an excellent identification rate based on a single biometric signature with unimodal biometric systems. Thus the error rates of unimodal biometric systems are relatively high due to all these practical problems, which makes them impractical for the use of critical safety applications. To resolve these problems, a solution is used in the same system in several biometric modalities, called a multimodal biometric system (MBS). MBSs combine different modalities in a unique recognition system. The multimodal fusion allows improving the results obtained by a single biometric characteristic and making the system more robust to noise and interference and more resistant to possible attacks. Fusion may be carried out at the level of signals acquired by the different sensors, of the parameters obtained for each modality, of the scores provided by unimodal experts or of the decision taken by said experts. In the case of fusion, the features obtained from the various biometric methods must be homogenized before the process of fusion is accomplished. This article describes the evolution of a multi-modal biometric identification system depends on 3 biometrics-face, iris & fingerprint. Feature extraction is done using the Gabor Wavelet method and classification is accomplished using the Random Forest classifier. This proposed method is applicable in real-life applications to identify biometric for offices, hospitals, and colleges/universities and so on.


1975 ◽  
Vol 14 (01) ◽  
pp. 32-34
Author(s):  
Elisabeth Schach

Data reporting the experience with an optical mark page reader is presented (IBM 1231Ν1). Information from 52,000 persons was gathered in seven countries, decentrally coded and centrally processed. Reader performance rates (i.e. sheets read per hour, sheet rejection rates, reading error rates) and costs (coding, verification, reading, etc.) are given.


Information ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Aluizio Rocha Neto ◽  
Thiago P. Silva ◽  
Thais Batista ◽  
Flávia C. Delicato ◽  
Paulo F. Pires ◽  
...  

In smart city scenarios, the huge proliferation of monitoring cameras scattered in public spaces has posed many challenges to network and processing infrastructure. A few dozen cameras are enough to saturate the city’s backbone. In addition, most smart city applications require a real-time response from the system in charge of processing such large-scale video streams. Finding a missing person using facial recognition technology is one of these applications that require immediate action on the place where that person is. In this paper, we tackle these challenges presenting a distributed system for video analytics designed to leverage edge computing capabilities. Our approach encompasses architecture, methods, and algorithms for: (i) dividing the burdensome processing of large-scale video streams into various machine learning tasks; and (ii) deploying these tasks as a workflow of data processing in edge devices equipped with hardware accelerators for neural networks. We also propose the reuse of nodes running tasks shared by multiple applications, e.g., facial recognition, thus improving the system’s processing throughput. Simulations showed that, with our algorithm to distribute the workload, the time to process a workflow is about 33% faster than a naive approach.


2021 ◽  
pp. 1-13
Author(s):  
Shikhar Tyagi ◽  
Bhavya Chawla ◽  
Rupav Jain ◽  
Smriti Srivastava

Single biometric modalities like facial features and vein patterns despite being reliable characteristics show limitations that restrict them from offering high performance and robustness. Multimodal biometric systems have gained interest due to their ability to overcome the inherent limitations of the underlying single biometric modalities and generally have been shown to improve the overall performance for identification and recognition purposes. This paper proposes highly accurate and robust multimodal biometric identification as well as recognition systems based on fusion of face and finger vein modalities. The feature extraction for both face and finger vein is carried out by exploiting deep convolutional neural networks. The fusion process involves combining the extracted relevant features from the two modalities at score level. The experimental results over all considered public databases show a significant improvement in terms of identification and recognition accuracy as well as equal error rates.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Moritz Mercker ◽  
Philipp Schwemmer ◽  
Verena Peschko ◽  
Leonie Enners ◽  
Stefan Garthe

Abstract Background New wildlife telemetry and tracking technologies have become available in the last decade, leading to a large increase in the volume and resolution of animal tracking data. These technical developments have been accompanied by various statistical tools aimed at analysing the data obtained by these methods. Methods We used simulated habitat and tracking data to compare some of the different statistical methods frequently used to infer local resource selection and large-scale attraction/avoidance from tracking data. Notably, we compared spatial logistic regression models (SLRMs), spatio-temporal point process models (ST-PPMs), step selection models (SSMs), and integrated step selection models (iSSMs) and their interplay with habitat and animal movement properties in terms of statistical hypothesis testing. Results We demonstrated that only iSSMs and ST-PPMs showed nominal type I error rates in all studied cases, whereas SSMs may slightly and SLRMs may frequently and strongly exceed these levels. iSSMs appeared to have on average a more robust and higher statistical power than ST-PPMs. Conclusions Based on our results, we recommend the use of iSSMs to infer habitat selection or large-scale attraction/avoidance from animal tracking data. Further advantages over other approaches include short computation times, predictive capacity, and the possibility of deriving mechanistic movement models.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 195
Author(s):  
Adrian Sergiu Darabant ◽  
Diana Borza ◽  
Radu Danescu

The human face holds a privileged position in multi-disciplinary research as it conveys much information—demographical attributes (age, race, gender, ethnicity), social signals, emotion expression, and so forth. Studies have shown that due to the distribution of ethnicity/race in training datasets, biometric algorithms suffer from “cross race effect”—their performance is better on subjects closer to the “country of origin” of the algorithm. The contributions of this paper are two-fold: (a) first, we gathered, annotated and made public a large-scale database of (over 175,000) facial images by automatically crawling the Internet for celebrities’ images belonging to various ethnicity/races, and (b) we trained and compared four state of the art convolutional neural networks on the problem of race and ethnicity classification. To the best of our knowledge, this is the largest, data-balanced, publicly-available face database annotated with race and ethnicity information. We also studied the impact of various face traits and image characteristics on the race/ethnicity deep learning classification methods and compared the obtained results with the ones extracted from psychological studies and anthropomorphic studies. Extensive tests were performed in order to determine the facial features to which the networks are sensitive to. These tests and a recognition rate of 96.64% on the problem of human race classification demonstrate the effectiveness of the proposed solution.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 233
Author(s):  
Jonathan Z.L. Zhao ◽  
Eliseos J. Mucaki ◽  
Peter K. Rogan

Background: Gene signatures derived from transcriptomic data using machine learning methods have shown promise for biodosimetry testing. These signatures may not be sufficiently robust for large scale testing, as their performance has not been adequately validated on external, independent datasets. The present study develops human and murine signatures with biochemically-inspired machine learning that are strictly validated using k-fold and traditional approaches. Methods: Gene Expression Omnibus (GEO) datasets of exposed human and murine lymphocytes were preprocessed via nearest neighbor imputation and expression of genes implicated in the literature to be responsive to radiation exposure (n=998) were then ranked by Minimum Redundancy Maximum Relevance (mRMR). Optimal signatures were derived by backward, complete, and forward sequential feature selection using Support Vector Machines (SVM), and validated using k-fold or traditional validation on independent datasets. Results: The best human signatures we derived exhibit k-fold validation accuracies of up to 98% (DDB2,  PRKDC, TPP2, PTPRE, and GADD45A) when validated over 209 samples and traditional validation accuracies of up to 92% (DDB2,  CD8A,  TALDO1,  PCNA,  EIF4G2,  LCN2,  CDKN1A,  PRKCH,  ENO1,  and PPM1D) when validated over 85 samples. Some human signatures are specific enough to differentiate between chemotherapy and radiotherapy. Certain multi-class murine signatures have sufficient granularity in dose estimation to inform eligibility for cytokine therapy (assuming these signatures could be translated to humans). We compiled a list of the most frequently appearing genes in the top 20 human and mouse signatures. More frequently appearing genes among an ensemble of signatures may indicate greater impact of these genes on the performance of individual signatures. Several genes in the signatures we derived are present in previously proposed signatures. Conclusions: Gene signatures for ionizing radiation exposure derived by machine learning have low error rates in externally validated, independent datasets, and exhibit high specificity and granularity for dose estimation.


Author(s):  
Anju Ajay

There are no effective face mask detection applications in the current COVID-19 scenario, which is in great demand for transportation, densely populated places, residential districts, large-scale manufacturers, and other organizations to ensure safety. In addition, the lack of big datasets of photographs with mask has made this task more difficult. With the use of Python programming, the Open CV library, Keras, and tensor flow, this project presents a way for recognizing persons without wearing a face mask using the facial recognition methodology. This is a self-contained embedded device that was created with the Raspberry Pi Electronic Development Board and runs on battery power. We make use of a wireless internet connection using USB modem. In comparison to other existing systems, our proposed method is more effective, reliable, and consumes significantly less data and electricity


Sign in / Sign up

Export Citation Format

Share Document