GUI Based Control System Analysis using PID Controller for Education

Author(s):  
Ashwaq Abdulameer ◽  
Marizan Sulaiman ◽  
M.S.M. Aras ◽  
Dawood Saleem

PID control strategy should be understood as a huge part in the education oriented on process control. Application of suitable GUI windows software can contribute in the increase of education quality and providing a better understanding of PID control through as it provides a user friendly environment which is suitable and comfortable for teaching, learning and training application. This paper present the PID control system analysis by explaining the PID controller three-term parameters, PID control types and structure, and PID tuning approach using Ziegler-Nichols and manual tuning method (in both s-domain and z-domain) with the help of simulation and Graphical User Interface GUI windows based on MATLAB. This software package is targeted for engineering students and practicing engineers.

Author(s):  
Balisranislam Balisranislam ◽  
I Nyoman Sutantra ◽  
Bambang Sampurno ◽  
Herry Sufyan Hadi

<p><span lang="IN">Buildings have priority to support the comfort and public relations of air circulation system and natural lighting, where the most widely used system is glass. In general, the process of cleaning glass in multi-storey building using conventional labor is by human labor. This process is relatively simple but has a loss in work accidents. Therefore, this study discusses glass cleaning robots. the working system of moving the wheel of the robot directly, and the control system using PID control. Tuning PID using Zigler-Nichols and Find Tuning methods with Simulink. Based on the results of PID Controller Calculation using Zigler Nichols method, the value obtained Kp = 0,01446, Ki = 0,0000026, and Kd = 9524,35. While calculation of PID controller using PID tuning with simulink, obtained value Kp = 19,365, Ki = 13,115, and Kd = 5,699. The speed control system using the Zigler-Nichols method does not produce a good response, because the resulting response is still unstable. While PID control using Tuning can produce a good response with up time can be achieved within 1.39 seconds, over shoot by 8% and the exact completion time is 5 seconds</span></p><p> </p>


2013 ◽  
Vol 278-280 ◽  
pp. 1529-1532
Author(s):  
Hong Pei Han ◽  
Wu Wang

Brushless DC motors (BLDC) are widely used for many industrial applications because of their high efficiency, high torque and low volume. This paper presents the PID control for BLDC Motor, because good control effect cannot be acquired by using the traditional PID control in the non-linear variable time servomechanism and it is difficult to tune the parameters and get satisfied control characteristics, some intelligent techniques should be taken. Wavelet Neural Network (WNN) was constrictive and fluctuant of wavelet transform and has self-study, self adjustment and nonlinear mapping functions of neural networks, So, a wavelet neural network self-tuning proportional-integral-derivative (PID) controller was proposed. The structure of WNN and PID tuning with WNN was presented and the equivalent circuit of BLDC and its mathematical models was analyzed, the simulation was taken with new method, the efficiency and advantages of this control strategy was successfully demonstrated which can applied into BLDC control system.


Author(s):  
Ashwaq Abdulameer ◽  
Marizan Sulaiman ◽  
MSM Aras ◽  
Dawood Saleem

The traditional PID controllers are used for a long time to control the DC motor for many industrial processes, that because of the simplicity, flexibility, and satisfactory performance of this type of controller. This paper discusses the basic PID tuning method (Ziegler-Nichols) and its modification (Chien-Hrones-Reswick). Also, analysis the speed control DC motor response using the PID controller parameters that result from the tuning methods mentioned earlier. Moreover, explain the advantage and disadvantage of each formula of these methods.  GUL/MATLAB windows used to implementing both methods to create more comfortable and friendly environment for better understanding of the PID controller tuning methods formula for engineering students and practicing engineers.


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


Author(s):  
Sheng-Yi Ruan ◽  
Jun Ye ◽  
Wen-Hua Cui

This chapter introduces an improved proportional-integral-derivative (PID) adjusting method by applying a simulated annealing algorithm (SAA) and the cosine, tangent, exponential measures of single-valued neutrosophic sets (SvNSs). For the approach, characteristic values of the unit step response (rise time, peak time, settling time, undershoot ratio, overshoot ratio, and steady-state error) in the control system should be neutrosophicated by the neutrosophic membership functions. Next, one of cosine, tangent, and exponential measures is used to obtain the similarity measure of the ideal SvNS and the response SvNS to assess the control performance of the PID controller by the optimization values of the PID parameters Kp, Ki, and Kd searched by SAA. The results of the illustrative example obtained by these measures and SAA are better than the existing ones and indicate better PID controller performance. Comparative results can demonstrate the rationality and superiority of the improved PID adjusting method.


2011 ◽  
Vol 328-330 ◽  
pp. 1908-1911
Author(s):  
Wei Liu ◽  
Jian Jun Cai ◽  
Xi Pin Fan

To deal with the defects of the steepest descent in slowly converging and easily immerging in partialm in imum,this paper proposes a new type of PID control system based on the BP neural network, which is a combination of the neural network and the PID strategy. It has the merits of both neural network and PID controller. Moreover, Fletcher-Reeves conjugate gradient in controller can make the training of network faster and can eliminate the disadvantages of steepest descent in BP algorithm. The parameters of the neural network PID controller are modified on line by the improved conjugate gradient. The programming steps under MATLAB are finally described. Simulation result shows that the controller is effective.


2011 ◽  
Vol 105-107 ◽  
pp. 2125-2128
Author(s):  
Hong Liang Guo ◽  
Dong Jie Zhao ◽  
Ling Zhao ◽  
Qing Wang

Valve train is one of important mechanisms in internal combustion engine. The experiment is an important method to study the valve train. In the design of valve train experiment, the Permanent-Magnet Synchronous Motor (PMSM) is used as the driving force to drive the camshaft. PID controller based on compensation with repetitive control is designed to control the PMSM. It can eliminate all periodic errors in closed-loop control. And it has a virtue of nonparametric dependence on its control performance by combining with two control methods. An example has been given and simulation has been made. The simulation result shows that the controller apparently improves the position tracking precision and reduces the tracking error of servo system. So the PID control system based on compensation with repetitive control has a much higher accuracy than the PID control system has. It is fit for high-accuracy control of valve train.


2012 ◽  
Vol 241-244 ◽  
pp. 1248-1254
Author(s):  
Feng Chen Huang ◽  
Hui Feng ◽  
Zhen Li Ma ◽  
Xin Hui Yin ◽  
Xue Wen Wu

Fuzzy control, based on traditional Proportional-Integral-Derivative (PID) control, is used to improve the management of a hydro-junction’s sluice scheduling. In this study, we combined the PID and Fuzzy control theories and determined the PID parameters of the fuzzy self-tuning method of a hydro-junction’s sluice. A fuzzy self-tuning PID controller and its algorithm were designed. In hydro-junction sluice control, the Fuzzy PID controller can modify PID parameters in real-time, resulting in a more dynamic response. The application of the fuzzy self-tuning PID controller in the CiHuai River project information integration system yielded very good results.


2013 ◽  
Vol 341-342 ◽  
pp. 892-895
Author(s):  
Jun Chao Zhang ◽  
Shao Hong Jing

The introduction of the AQC boiler has complex effects on the temperature of Tertiary air, traditional PID is difficult to achieve the effective control. Combined the method of the conventional PID with the fuzzy control theory, a fuzzy self-tuning PID controller is designed. Compared with traditional PID, results of simulation show that the fuzzy PID controller improves not only the adaptability and robustness of the system, but also the system's static and dynamic performance.


Sign in / Sign up

Export Citation Format

Share Document