scholarly journals STUDI NUMERIK SIMULASI ROBOT PEMBERSIH KACA PADA GEDUNG BERTINGKAT

Author(s):  
Balisranislam Balisranislam ◽  
I Nyoman Sutantra ◽  
Bambang Sampurno ◽  
Herry Sufyan Hadi

<p><span lang="IN">Buildings have priority to support the comfort and public relations of air circulation system and natural lighting, where the most widely used system is glass. In general, the process of cleaning glass in multi-storey building using conventional labor is by human labor. This process is relatively simple but has a loss in work accidents. Therefore, this study discusses glass cleaning robots. the working system of moving the wheel of the robot directly, and the control system using PID control. Tuning PID using Zigler-Nichols and Find Tuning methods with Simulink. Based on the results of PID Controller Calculation using Zigler Nichols method, the value obtained Kp = 0,01446, Ki = 0,0000026, and Kd = 9524,35. While calculation of PID controller using PID tuning with simulink, obtained value Kp = 19,365, Ki = 13,115, and Kd = 5,699. The speed control system using the Zigler-Nichols method does not produce a good response, because the resulting response is still unstable. While PID control using Tuning can produce a good response with up time can be achieved within 1.39 seconds, over shoot by 8% and the exact completion time is 5 seconds</span></p><p> </p>

Author(s):  
Xian Hong Li ◽  
Hai Bin Yu ◽  
Ming Zhe Yuan ◽  
Chuan Zhi Zang ◽  
Zhuo Wang

This paper focuses on the design method of the optimal multiple inputs and multiple outputs (MIMO) proportional integral derivative (PID) controllers for the MIMO processes via using Lyapunov theorems. A hybrid augmented integral squared error (HAISE) is applied to design the optimal multi-loop PID controller for the MIMO plants. The optimal multi-loop PID control problem is transformed into a nonlinear constraint optimization (NLCO) problem. The optimal PID controller parameters are obtained from solving the NLCO problem. The design method is applied to devise the multi-loop optimal PID controller for different types of MIMO plants and the optimal PID controller under different control weight is shown in this paper. The performances of different PID tuning methods are studied too. The computer simulation results are presented to demonstrate the effectiveness of the design method and good performance and robustness of the optimal multi-loop PID controllers.


Author(s):  
Ashwaq Abdulameer ◽  
Marizan Sulaiman ◽  
M.S.M. Aras ◽  
Dawood Saleem

PID control strategy should be understood as a huge part in the education oriented on process control. Application of suitable GUI windows software can contribute in the increase of education quality and providing a better understanding of PID control through as it provides a user friendly environment which is suitable and comfortable for teaching, learning and training application. This paper present the PID control system analysis by explaining the PID controller three-term parameters, PID control types and structure, and PID tuning approach using Ziegler-Nichols and manual tuning method (in both s-domain and z-domain) with the help of simulation and Graphical User Interface GUI windows based on MATLAB. This software package is targeted for engineering students and practicing engineers.


2013 ◽  
Vol 278-280 ◽  
pp. 1529-1532
Author(s):  
Hong Pei Han ◽  
Wu Wang

Brushless DC motors (BLDC) are widely used for many industrial applications because of their high efficiency, high torque and low volume. This paper presents the PID control for BLDC Motor, because good control effect cannot be acquired by using the traditional PID control in the non-linear variable time servomechanism and it is difficult to tune the parameters and get satisfied control characteristics, some intelligent techniques should be taken. Wavelet Neural Network (WNN) was constrictive and fluctuant of wavelet transform and has self-study, self adjustment and nonlinear mapping functions of neural networks, So, a wavelet neural network self-tuning proportional-integral-derivative (PID) controller was proposed. The structure of WNN and PID tuning with WNN was presented and the equivalent circuit of BLDC and its mathematical models was analyzed, the simulation was taken with new method, the efficiency and advantages of this control strategy was successfully demonstrated which can applied into BLDC control system.


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


2011 ◽  
Vol 328-330 ◽  
pp. 1908-1911
Author(s):  
Wei Liu ◽  
Jian Jun Cai ◽  
Xi Pin Fan

To deal with the defects of the steepest descent in slowly converging and easily immerging in partialm in imum,this paper proposes a new type of PID control system based on the BP neural network, which is a combination of the neural network and the PID strategy. It has the merits of both neural network and PID controller. Moreover, Fletcher-Reeves conjugate gradient in controller can make the training of network faster and can eliminate the disadvantages of steepest descent in BP algorithm. The parameters of the neural network PID controller are modified on line by the improved conjugate gradient. The programming steps under MATLAB are finally described. Simulation result shows that the controller is effective.


2011 ◽  
Vol 105-107 ◽  
pp. 2125-2128
Author(s):  
Hong Liang Guo ◽  
Dong Jie Zhao ◽  
Ling Zhao ◽  
Qing Wang

Valve train is one of important mechanisms in internal combustion engine. The experiment is an important method to study the valve train. In the design of valve train experiment, the Permanent-Magnet Synchronous Motor (PMSM) is used as the driving force to drive the camshaft. PID controller based on compensation with repetitive control is designed to control the PMSM. It can eliminate all periodic errors in closed-loop control. And it has a virtue of nonparametric dependence on its control performance by combining with two control methods. An example has been given and simulation has been made. The simulation result shows that the controller apparently improves the position tracking precision and reduces the tracking error of servo system. So the PID control system based on compensation with repetitive control has a much higher accuracy than the PID control system has. It is fit for high-accuracy control of valve train.


2013 ◽  
Vol 341-342 ◽  
pp. 892-895
Author(s):  
Jun Chao Zhang ◽  
Shao Hong Jing

The introduction of the AQC boiler has complex effects on the temperature of Tertiary air, traditional PID is difficult to achieve the effective control. Combined the method of the conventional PID with the fuzzy control theory, a fuzzy self-tuning PID controller is designed. Compared with traditional PID, results of simulation show that the fuzzy PID controller improves not only the adaptability and robustness of the system, but also the system's static and dynamic performance.


2012 ◽  
Vol 220-223 ◽  
pp. 1752-1756
Author(s):  
Gui Rong Dong

According to the perturbation in lithography positioning control system, a novel gain scheduled PID controller using a root mean square (RMS) signal is proposed. Perturbation is also referred as the stage hunting, and the positioning control system will be very weak against small disturbances such as electrical noise or even structural vibration of the building in which the stage is installed. The gain scheduled PID controller is used to minimize the stage hunting and simultaneously maximize the immunity to disturbances. Simulations results verify the effectiveness of the gain scheduled PID controller for the positioning control in the lithography stage, as compared with the traditional PID controller.


2012 ◽  
Vol 433-440 ◽  
pp. 7011-7016 ◽  
Author(s):  
Chao Bo Chen ◽  
Bing Liu ◽  
Ning He ◽  
Song Gao ◽  
Quan Pan

The accuracy and real-time of modern missile flight control system of traditional aerodynamic can not be satisfied. In this paper a new method is presented to improve the accuracy and real-time of missiles under this condition. First of all, a missile sub-channel model of the dynamic equations and steering gear is established, then based on the established model, using PID controller to control steering gear and three channels of missile pitch, yaw, roll respectively which is called missile sub-channel PID control method, and finally making use of MATLAB/Simulink to complete the simulation. Simulation results show that compared with traditional aerodynamic control system, this method can reduce the response time of aerodynamic missile and enhance the stability of the control system obviously.


Author(s):  
Tesheng Hsiao ◽  
Chung-Chiang Cheng

The proportional-integral-derivative (PID) controller is widely used in motion control systems due to its simplicity and effectiveness. To achieve satisfactory performance, the PID parameters must be properly tuned. Although numerous PID tuning methods were investigated in the past, most of them were based on either time-domain or frequency-domain responses, while integration of features in both domains for PID tuning was less addressed. However, many industrial practitioners still found it difficult to compromise multiple conflicting control objectives, such as fast responses, small overshoot and tracking errors, and good robustness, with PID controllers. Moreover, it is desirable to adjust PID parameters online such that plant variations and unexpected disturbances can be compensated for more efficiently. In view of these requirements, this paper proposes an adaptive PID control law that updates its parameters online by minimizing the time-domain tracking errors subject to frequency-domain constraints that are imposed for loop shaping. By combining optimization criteria in both time and frequency domains for online parameter adjustment, the proposed PID controller can achieve good tracking performance with adequate robustness margin. Then the proposed PID law is applied to control an XZ-table driven by AC servo motors. Experimental results show that the tracking performance of the proposed controller is superior to that of a constant-gain PID controller whose parameters were tuned by the commercial Matlab/Simulink PID tuner.


Sign in / Sign up

Export Citation Format

Share Document