scholarly journals Harmonic minimization of a single-phase asymmetrical TCHB multilevel inverter based on nearest level control method

Author(s):  
Wail Ali Ali Saleh ◽  
Nurul Ain Mohd Said ◽  
Wahidah Abd Halim

Multilevel inverters are gaining special interest among researchers and in the industry due to their widespread applications and numerous merits. Obtaining high quality, more reliable output while using a reduced number of electronic components is the main purpose of most of the research conducted in this area of study. The purpose of this study is to apply the nearest level control (NLC) method to a 13-level transistor-clamped H-bridge (TCHB) inverter with unequal DC voltage supplies. The NLC method operates at the fundamental frequency, thus reducing switching losses, and can reduce the harmonic content significantly. The adopted multilevel inverter consists of two TCHB cells supplied with two asymmetrical DC input sources with a voltage ratio of 1:2. This structure reduces the number of electronic components, and the asymmetry in the DC input voltages results in a higher number of levels. The adopted topology and its proposed control method were simulated in Matlab/Simulink, and the simulation results were verified through experiments using an Altera field-programmable gate array (FPGA) board. The results showed that the topology and its control method are efficient in obtaining a high-quality output with an improved total harmonic distortion (THD).

Author(s):  
N. Susheela ◽  
P. Satish Kumar

<p>The popularity of multilevel inverters have increasing over the years in various applications without use of a transformer and has many benefits. This work presents the performance and comparative analysis of single phase diode clamped multilevel inverter and a hybrid inverter with reduced number of components. As there are some drawbacks of diode clamped multilevel inverter such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem, an implementation of hybrid inverter that requires fewer components and less carrier signals when compared to conventional multilevel inverters is discussed. The performance of single phase diode clamped multilevel inverter and hybrid multilevel inverter for seven, nine and eleven levels is performed using phase disposition, alternate phase opposition disposition sinusoidal pulse width modulation techniques. Both the multilevel inverter are implemented for the above mentioned multicarrier based Pulse Width Modulation methods for R and R-L loads.  The total harmonic distortion is evaluated at various modulation indices. The analysis of the multilevel inverters is done by simulation in matlab / simulink environment.</p>


Author(s):  
Nunsavath Susheela

<p>The multilevel inverters have highly desirable characteristics in high power high voltage applications. The multilevel inverter was started first with diode clamped multilevel inverter. Later, various configurations have been came into existence for many applications. However the multilevel inverters have some demerits such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem. The hybrid multilevel inverter presented in this paper has superior characteristics over conventional multilevel inverters. The hybrid multilevel inverter employs fewer components and less carrier signals when compared to conventional multilevel inverters. It consists of level generation and polarity generation stages which involves high frequency and low frequency switches. The complexity and overall cost for higher output voltage levels are greatly reduced. Implementation of single phase 7-level, 9-level and 11-level diode clamped multilevel inverter and hybrid multilevel inverter has been performed using sinusoidal pulse width modulation (SPWM) strategies i.e., phase disposition (PD), alternate phase opposition disposition (APOD). Also these techniques are compared in terms of total harmonic distortion (THD) for various modulation indices and observed to be greatly improved in case of hybrid inverter when compared to diode clamped inverter. The comparative study of performance for single phase diode clamped multilevel inverter and hybrid inverter is analyzed with different loads.  Simulation is performed using MATLAB/ SIMULINK. </p>


Author(s):  
Arun V. ◽  
Prabaharan N.

This paper presents the Asymmetrical multilevel inverter with 1:3 voltage propagation. Switching pulse for Asymmetrical multilevel inverter are generated using embedded controller in m-file using MATLAB. The Asymmetrical multilevel inverter with 1:3 voltage propagation can produce high quality output voltage with less number of switches and voltage sources compare to conventional multilevel inverters. Contrasting other switching schemes, the proposed Switching scheme significantly reduces the Total Harmonic Distortion (THD) and minimize switching losses and reduces the complexity. To evaluate the developed scheme, simulations are carried out through MATLAB and real time implementations are done through microcontroller ARM Cortex™-M0 Core. The simulation and hardware results are presented.


Author(s):  
Nunsavath Susheela ◽  
P. Satish Kumar

The multilevel inverters are very popular in high power high voltage applications. However the multilevel inverters has some demerits such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem. The hybrid multilevel inverter presented in this paper has superior characteristics over conventional multilevel inverters. The hybrid multilevel inverter employs fewer components and less carrier signals when compared to conventional multilevel inverters. It consists of level generation and polarity generation stages which involves high frequency and low frequency switches. The complexity and overall cost for higher output voltage levels are greatly reduced. Implementation of single phase 7-level, 9-level and 11-level hybrid multilevel inverter has been performed using sinusoidal pulse width modulation (SPWM) strategies i.e., phase disposition (PD), alternate phase opposition disposition (APOD) and carrier overlapping (CO). Also the three techniques are compared in terms of total harmonic distortion (THD) for various modulation indices and observed to be greatly improved when compared to conventional topologies. The performance of single phase eleven level hybrid inverter is analyzed for different loads.  Simulation is performed using MATLAB/ Simulink.


2021 ◽  
Vol 20 (2) ◽  
pp. 1-7
Author(s):  
Jahanzeb - ◽  
Shahrin Md. Ayob ◽  
Saifullah Khan ◽  
Mohd Zaki Daud ◽  
Razman Ayop

There is always a need to create efficient and optimized converters to deliver the best possible results to achieve a better THD profile in the waveform output. One way is by controlling the switching of the power switches of the converters using appropriate modulation schemes. While numerous works have been done in proposing new switching modulation strategies for multilevel inverters, this work will compare multicarrier PWM and near-to-level control (NLC) modulation schemes. In this paper, multicarrier PWM variants, namely, PD-PWM, POD-PWM, and APOD-PWM, are designed and simulated. Their voltage THD and spectrum performance are discussed when applied to single-phase 7, 9, and 11-level cascaded multilevel inverters. Then NLC modulation will be designed and applied to similar multilevel inverter circuits. It will be shown that the NLC exhibits some superior performances compared to PWM-based but with several drawbacks that can be optimized. 


2017 ◽  
Vol 7 (1.5) ◽  
pp. 209
Author(s):  
B.Vijaya Krishna ◽  
B. Venkata Prashanth ◽  
P. Sujatha

Multilevel Inverters (MLI) have very good features when compared to Inverters. But using more switches in the conventional configuration will reduce its application in a wider range. For that reason a modified 7-level MLI Topology is presented. This new topology consists of less number of switches that can be reduced to the maximum extent and a separate gate trigger circuit. This will reduce the switching losses, reduce the size of the multilevel inverter, and cost of installation. This new topology can be used in Electrical drives and renewable energy applications. Performance of the new MLI is tested via. Total harmonic distortion. This construction structure of this multilevel inverter topology can also be increased for 9-level, 11-level and so on and simulated by the use of MATLAB/SIMULINK. A separate Carrier Based PWM Technique is used for the pulse generation in this configuration.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950089 ◽  
Author(s):  
V. Thiyagarajan ◽  
P. Somasundaram ◽  
K. Ramash Kumar

Multilevel inverter (MLI) has become more popular in high power, high voltage industries owing to its high quality output voltage waveform. This paper proposes a novel single phase extendable type MLI topology. The term ‘extendable’ is included since the presented topology can be extended with maximum number of dc voltage sources to synthesize larger output levels. This topology can be operated in both symmetrical and asymmetrical conditions. The major advantages of the proposed inverter topology include minimum switching components, reduced gate driver circuits, less harmonic distortion and reduced switching losses. The comparative analysis based on the number of switches, dc voltage sources and conduction switches between the proposed topology and other existing topologies is presented in this paper. The comparison results show that the proposed inverter topology requires fewer components. The performance of the proposed MLI topology has been analyzed in both symmetrical and asymmetrical conditions. The simulation model is developed using MATLAB/SIMULINK software to verify the performance of the proposed inverter topology and also the feasibility of the presented topology during the symmetrical condition has been validated experimentally.


Author(s):  
M. S. Chye ◽  
J. A. Soo ◽  
Y. C. Tan ◽  
M. Aizuddin ◽  
S. Lee ◽  
...  

This paper presents a single-phase multilevel inverter (MLI) with simpler basic unit cells. The proposed MLI is able to operate in two modes, i.e. charge mode to charge the batteries, and inverter mode to supply AC power to load, and therefore, it is inherently suitable for photovoltaic (PV) power generation applications. The proposed MLI requires lower number of power MOSFETs and gate driver units, which will translate into higher cost saving and better system reliability. The power MOSFETs in the basic unit cells and H-bridge module are switched at near fundamental frequency, i.e. 100 Hz and 50 Hz, respectively, resulting in lower switching losses. For low total harmonic distortion (THD) operation, a deep scanning method is employed to calculate the switching angles of the MLI. The lowest THD obtained is 8.91% at modulation index of 0.82. The performance of the proposed MLI (9-level) has been simulated and evaluated experimentally. The simulation and experimental results are in good agreement and this confirms that the proposed MLI is able to produce an AC output voltage with low THD.


2015 ◽  
Vol 793 ◽  
pp. 167-171
Author(s):  
Mohd Aizuddin Yusof ◽  
Yee Chyan Tan ◽  
M. Othman ◽  
S.S. Lee ◽  
M.A. Roslan ◽  
...  

Multilevel inverters are one of the preferred inverter choices for solar photovoltaic (PV) applications. While these inverters are capable of producing AC staircase output voltage waveform, the total harmonic distortion (THD) of the output voltage waveform can become worse if the switching angle of each voltage level is not carefully chosen. In this paper, four switching angle arrangement techniques are presented and the switching angles generated by these techniques are applied to a new single-phase boost multilevel (SPBM) inverter. The performance of 3-, 5-, 7-, 9-and 11-level SPBM inverter having four different sets of switching angles derived using the aforementioned techniques have been evaluated and compared using PSIM software. Simulation results show that one of the techniques is able to produce an output voltage waveform with the lowest THD, whilst the other generates an output voltage waveform with the highest fundamental voltage component.


Author(s):  
Wahidah Abd Halim ◽  
Tengku Noor Ariana Tengku Azam ◽  
Komathi Applasamy ◽  
Auzani Jidin

<span lang="EN-US">Multilevel inverters are emerging as the new breed of power converter options for high power applications. They typically synthesis the staircase voltage waveform (from several dc sources) which reduced harmonic content. This paper presents a simple selective harmonic elimination (SHE) modulation for single-phase cascaded H-bridge (CHB) multilevel inverter. The optimum switching angle of the transcendental equations describing the fundamental and harmonic components is solved by means of the Newton-Raphson (NR) method. The proposed SHE scheme is performed through simulation using MATLAB/Simulink. This simulation results are then verified through experiment using Altera DE0-Nano field-programmable gate array (FPGA). The proposed SHE is efficient in eliminating the lowest-order harmonics and producing a higher quality output waveform with a better harmonic profile.  </span>


Sign in / Sign up

Export Citation Format

Share Document