scholarly journals Adaptive Link Aware on-demand Multicast Routing Scheme in MANET

Author(s):  
Ruban Chakravarthy ◽  
G. Ranganathan

<em>The main objective of this paper is to propose a new multicast routing scheme to adopt with the dynamic topology of MANET at the same time to provide high multicast efficiency and packet delivery ratio. The proposed scheme is named as Link Aware on Demand Multicast Routing (LAOMR) scheme. In this scheme, initially the source node forms the multicast group by announcing itself as a multicast source agent to all the nodes in the network. The nodes which are eager to join in the group are sending the join request to the source node. Then the source node finds the route to reach the multicast group through some intermediate nodes. The intermediate nodes are not interested to hear the multicast message but they are act as the routers to forward the packets to the multicast group. The intermediate nodes are chosen based on the link residual life (LRL) of the nodes. The node which has the highest LRL and closer to the multicast group is selected as the forwarder node. So, the proposed scheme reduces the link failure in the multicast route and increases the multicast efficiency, throughput. The performance is evaluated by using the simulation results obtained from NS2 Simulator.</em>

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3884 ◽  
Author(s):  
Hongxian Tian ◽  
Mary Weitnauer ◽  
Gedeon Nyengele

We study the placement of gateways in a low-power wide-area sensor network, when the gateways perform interference cancellation and when the model of the residual error of interference cancellation is proportional to the power of the packet being canceled. For the case of two sensor nodes sending packets that collide, by which we mean overlap in time, we deduce a symmetric two-crescent region wherein a gateway can decode both collided packets. For a large network of many sensors and multiple gateways, we propose two greedy algorithms to optimize the locations of the gateways. Simulation results show that the gateway placements by our algorithms achieve lower average contention, which means higher packet delivery ratio in the same conditions, than when gateways are naively placed, for several area distributions of sensors.


Smart Cities ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 1004-1021
Author(s):  
Lamia EL-Garoui ◽  
Samuel Pierre ◽  
Steven Chamberland

The smart city is an ecosystem that interconnects various devices like sensors, actuators, mobiles, and vehicles. The intelligent and connected transportation system (ICTS) is an essential part of this ecosystem that provides new real-time applications. The emerging applications are based on Internet-of-Things (IoT) technologies, which bring out new challenges, such as heterogeneity and scalability, and they require innovative communication solutions. The existing routing protocols cannot achieve these requirements due to the surrounding knowledge supported by individual nodes and their neighbors, displaying partial visibility of the network. However, the issue grew ever more arduous to conceive routing protocols to satisfy the ever-changing network requirements due to its dynamic topology and its heterogeneity. Software-Defined Networking (SDN) offers the latest view of the entire network and the control of the network based on the application’s specifications. Nonetheless, one of the main problems that arise when using SDN is minimizing the transmission delay between ubiquitous nodes. In order to meet this constraint, a well-attended and realistic alternative is to adopt the Machine Learning (ML) algorithms as prediction solutions. In this paper, we propose a new routing protocol based on SDN and Naive Bayes solution to improve the delay. Simulation results show that our routing scheme outperforms the comparative ones in terms of end-to-end delay and packet delivery ratio.


Author(s):  
R Aquino Santos ◽  
L A Villaseñor González ◽  
V Rangel Licea ◽  
A González Potes ◽  
M A García Ruiz ◽  
...  

This paper presents a performance analysis of an enhanced version of the Topological Multicast Routing Algorithm (ToMuRo) on mobile wireless ad‐hoc networks, which includes undecided border nodes. Employing undecided border nodes to forward multicast packets represents a significant enhancement because it optimizes the path discovery process by selecting undecided nodes that can function as multicast relay nodes. Flooding Mechanism and On‐Demand Multicast Routing Protocol (ODMRP) are simulated and compared with both the basic and enhanced versions of the Topological Multicast Routing algorithm. The scenario evaluated considers one multicast transmitter and one, two, and three multicast receivers with various mobility patterns and transmission ranges. The behavior of 250 nodes is evaluated in terms of End to End Delay (EED), jitter, packet delivery ratio, and overhead. Results reveal that the enhanced version of ToMuRo performs better in terms of packet delivery ratio and jitter, while ODMRP performs better with respect to EED and Overhead.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5526 ◽  
Author(s):  
Hamza Fahim ◽  
Wei Li ◽  
Shumaila Javaid ◽  
Mian Muhammad Sadiq Fareed ◽  
Gulnaz Ahmed ◽  
...  

An intrabody nanonetwork (IBNN) is composed of nanoscale (NS) devices, implanted inside the human body for collecting diverse physiological information for diagnostic and treatment purposes. The unique constraints of these NS devices in terms of energy, storage and computational resources are the primary challenges in the effective designing of routing protocols in IBNNs. Our proposed work explicitly considers these limitations and introduces a novel energy-efficient routing scheme based on a fuzzy logic and bio-inspired firefly algorithm. Our proposed fuzzy logic-based correlation region selection and bio-inspired firefly algorithm based nano biosensors (NBSs) nomination jointly contribute to energy conservation by minimizing transmission of correlated spatial data. Our proposed fuzzy logic-based correlation region selection mechanism aims at selecting those correlated regions for data aggregation that are enriched in terms of energy and detected information. While, for the selection of NBSs, we proposed a new bio-inspired firefly algorithm fitness function. The fitness function considers the transmission history and residual energy of NBSs to avoid exhaustion of NBSs in transmitting invaluable information. We conduct extensive simulations using the Nano-SIM tool to validate the in-depth impact of our proposed scheme in saving energy resources, reducing end-to-end delay and improving packet delivery ratio. The detailed comparison of our proposed scheme with different scenarios and flooding scheme confirms the significance of the optimized selection of correlated regions and NBSs in improving network lifetime and packet delivery ratio while reducing the average end-to-end delay.


Author(s):  
L. Shrivastava ◽  
G. S. Tomar ◽  
S. S. Bhadauria

Grid computing came into existence as a manner of sharing heavy computational loads among multiple computers to be able to compute highly complex mathematical problems. The grid topology is highly flexible and easily scalable, allowing users to join and leave the grid without the hassle of time and resource-hungry identification procedures, having to adjust their devices or install additional software. The goal of grid computing is described as “to provide flexible, secure and coordinated resource sharing among dynamic collections of individuals, institutions and resources”. AODV is an on-demand (reactive) algorithm capable of both unicast and multicast routing. In this paper, AODV has been modified by varying some of the configuration parameters used in this algorithm to improve its performance. This modified protocol i.e. A-AODV (advanced ad hoc on demand distance vector) has been compared with AODV in grid environment. The simulations have shown that A-AODV is able to achieve high throughput and packet delivery ratio and average end-to-end delay is reduced.


2020 ◽  
pp. 26-32
Author(s):  
R.Pandi Selvam ◽  

A MANET is a self-conFigureuring system of mobile hosts connected by wireless links. The routers are free to move randomly and organize themselves arbitrarily; thus, the network's wireless topology may change rapidly and unpredictably. Routing is the process of exchanging information from one station to the other stations of the network. Multicasting is a popular mechanism for supporting group communication. In a multicast session, the sender transmits only one copy of each message that is replicated within the network and delivered to multiple recipients. This multicast routing is highly deal with self-organized network in recent days due to its broadcast characteristics. However, devising multicast protocols to provide group communications in mobile ad-hoc networks is significantly more complicated, because of the wireless medium, changing topology, battery power and available bandwidth as well. This paper, evaluates two prominent on-demand multicast routing protocols for group communication, namely, Multicast Ad hoc On-Demand Distance Vector (MAODV) and On-Demand Multicast Routing Protocol(ODMRP) as increasing number of multicast sources and receivers in both single-active multicast group and multi-active multicast group in the network.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3038 ◽  
Author(s):  
Nadeem Javaid ◽  
Abdul Majid ◽  
Arshad Sher ◽  
Wazir Khan ◽  
Mohammed Aalsalem

Sparse node deployment and dynamic network topology in underwater wireless sensor networks (UWSNs) result in void hole problem. In this paper, we present two interference-aware routing protocols for UWSNs (Intar: interference-aware routing; and Re-Intar: reliable and interference-aware routing). In proposed protocols, we use sender based approach to avoid the void hole. The beauty of the proposed schemes is that they not only avoid void hole but also reduce the probability of collision. The proposed Re-Intar also uses one-hop backward transmission at the source node to further improve the packet delivery ratio of the network. Simulation results verify the effectiveness of the proposed schemes in terms of end-to-end delay, packet delivery ratio and energy consumption.


2012 ◽  
Vol 241-244 ◽  
pp. 2284-2289 ◽  
Author(s):  
Juan Li ◽  
Xiao Lin Zhang ◽  
Jun Hai Bao ◽  
Guo Lei Geng

Based on the traditional DSR Protocols have obvious drawbacks such as low packet delivery rate and high routing overhead in the signal intensive UAV network. This paper introduces an improved DSR protocol(Restrict-DSR). The new DSR protocol can save the space of node routing memory and reduce the routing overhead by limiting the maximum hop count of route request. Simulation results by NS2 show that the RE-DSR has improved the packet delivery ratio and decreased the average of packet end-to-end delay and routing overhead comparing with the conventional DSR Protocols in the signal intensive UAV network.


2022 ◽  
Vol 13 (2) ◽  
pp. 0-0

Wireless Multimedia Sensor Networks (WMSNs) have been used in many applications and powerful distributed systems. But the performance of WMSNs is suffering from the occurrence of energy holes. To improve the performance of the network and packet delivery ratio, a Voronoi-Ant colony based Routing (VoR-Ant-R) algorithm is proposed for WMSNs to discover the energy holes and finds the shortest path from the source to destination in the WMSNs even though faces some obstacles. The WMSNs are constructed using the Voronoi structure to bypass energy holes. After bypassing the energy hole in the path; an ACO is introduced to select a neighborhood node for data forwarding. This ACO constructs the shortest optimized path to enhance the performance of the WMSNs. The proposed work is experimentally compared with other algorithms such as IEEABR, EEABR, SC, and BEES. The simulation results show that VoR-Ant-R can increase energy efficiency, success rate, reduces energy consumption, and latency.


Sign in / Sign up

Export Citation Format

Share Document