Design and Performance of 8Slot-12Pole Permanent Magnet Flux Switching Machines for Electric Bicycle Application

Author(s):  
Laili Iwani Jusoh ◽  
Erwan Sulaiman ◽  
Rajesh Kumar ◽  
Fatihah Shafiqah Bahrim

This paper presents a new design and performance of single phase permanent magnet flux-switching machine (PMFSM) for electric bicycle application. 8Slot-12Pole design machine were choose by analyzing the highest power density value. All active parts such as permanent magnet and armature coil are located on the stator, while the rotor part consists of only single piece iron. PMFSM have a great advantage with robust rotor structure that make it much higher power and applicable for EV application compared to SRM and IPMSM. The design, operating principles, characteristics of torque, and power of this new topology are investigated by JMAG-Designer via a 2D-FEA. Size of motor and volume of PM is designed at 75mm and 80g, respectively. Based on the investigation, it can be concluded that the proposed topology of single phase 8Slot 12Pole PMFSM achieved the target of highest performance of power density, approximately at 0.113W/mm3 with reduced permanent magnet and size of design motor. Due to the low torque performance of this initial design, further works is ongoing to improve the torque performance. In future work, outer rotor PMFSM structure design will be presented and compared with the “Deterministic Optimization Method” to improve the initial design.

2018 ◽  
Vol 7 (4.30) ◽  
pp. 317
Author(s):  
M. F. Omar ◽  
E. Sulaiman ◽  
L. I. Jusoh ◽  
S. M. N. S. Othman ◽  
S. A. L. S. Badrudden

Permanent magnet flux switching machines (PMFSMs) in which their torque performance produced by interaction between armature coils and permanent magnet (PM) have been widely designed for various applications. In this regard, single-phase 8Slots-12Poles PMFSM with single tooth stator is considered the most suitable candidate for light weight applications because of their advantages of lower copper loss, high efficiency and robust rotor. However, issues of low torque performance due to weak flux linkage, high of PM volume, and high distortion in back-emf that need to be improved. In this paper, a new design of single-phase PMFSM using multi-tooth stator is proposed. Both PMFSMs have been designed using JMAG Designer version 15 and analysed through 2D-FEA. Parameters of stator outer radius, rotor outer radius, air gap, and stack length are set to 37.5mm, 22mm, 0.25mm, and 20.3mm, respectively. Based on the 2D-FEA, PM flux linkage and torque performances of the PMFSM using multi-tooth are 5 times and 38% higher than PMFSM using single-tooth. As a conclusion, single-phase 4Slot-12Poles PMFSM using multi-tooth stator considered as the best candidate for light weight applications due to the less PM volume, and good performances of toque, power and based speed of 1.44Nm, 219W, 1,062rpm, respectively.


2021 ◽  
Vol 12 (3) ◽  
pp. 131
Author(s):  
Jiawei Chai ◽  
Tianyi Zhao ◽  
Xianguo Gui

Permanent magnet torque motor (PMTM) is widely used in aerospace, computer numerical control (CNC) machine tools, and industrial robots with many advantages such as high torque density, strong overload capacity, and low torque ripple. With the upgrading of industrial manufacturing, the requirements for the performance of torque motors have become more stringent. At present, how to achieve high output torque and low torque ripple has become a research hotspot of torque motors. In the optimization process, it is necessary to increase the output torque while the torque ripple can be reduced, and it is difficult to get a good result with the single-objective optimization. In this paper, a multi-objective optimization method based on the combination of design parameter stratification and support vector machine (SVM) is proposed. By analyzing the causes of torque ripple, the output torque, efficiency, cogging torque, and total harmonic distortion (THD) of back electromotive force (EMF) are selected as the optimization objectives. In order to solve the coupling problem between the motor parameters, the calculation formula of Pearson correlation coefficient is used to analyze the relationship between the design parameters and the optimization objectives, and the design parameters are layered ac-cording to the sensitivity. In order to shorten the optimization cycle of the motor, SVM is used as a fitting method of the mathematical model. The performance between initial and optimal motors is compared, and it can be found that the optimized motor has a higher torque and lower torque ripple. The simulation results verify the effectiveness of the proposed optimization method.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5242
Author(s):  
Jolene Ziyuan Lim ◽  
Alexiaa Sim ◽  
Pui Wah Kong

The aim of this review is to investigate the common wearable devices currently used in field hockey competitions, and to understand the hockey-specific parameters these devices measure. A systematic search was conducted by using three electronic databases and search terms that included field hockey, wearables, accelerometers, inertial sensors, global positioning system (GPS), heart rate monitors, load, performance analysis, player activity profiles, and competitions from the earliest record. The review included 39 studies that used wearable devices during competitions. GPS units were found to be the most common wearable in elite field hockey competitions, followed by heart rate monitors. Wearables in field hockey are mostly used to measure player activity profiles and physiological demands. Inconsistencies in sampling rates and performance bands make comparisons between studies challenging. Nonetheless, this review demonstrated that wearable devices are being used for various applications in field hockey. Researchers, engineers, coaches, and sport scientists can consider using GPS units of higher sampling rates, as well as including additional variables such as skin temperatures and injury associations, to provide a more thorough evaluation of players’ physical and physiological performances. Future work should include goalkeepers and non-elite players who are less studied in the current literature.


Sign in / Sign up

Export Citation Format

Share Document