Effect of PWM Duty Cycle and Frequency of Power Supply to the LED Bulb Efficacy

Author(s):  
Andi Pawawoi ◽  
Wahyu Prabowo

In this paper described the effect of frequency and duty cycle of the PWM power supply LED bulb light efficacy. Efficacy LED bulb is measured by measuring the light flux and power consumed at standard conditions, the bulb is supplied directly from the network. Then efficacy, the luminous flux and power the bulb is also measured under the conditions given PWM power supply at some frequency and duty cycle value. In the same light flux levels between the two treatment, the use of PWM power supply can increase the efficacy of the light bulb up to 66.2%, with a value of 117.52 light efficacy lumen / Watt. At the level of light flux which is slightly lower, the use of PWM power supply to the LED bulb with a specific frequency and power supply can achieve the efficacy of 397.14 lumens / Watt

2011 ◽  
Vol 19 (4) ◽  
pp. 341
Author(s):  
Joel Díaz Reyes ◽  
Aarón Pérez-Benítez ◽  
Valentín Dorantes

<span>Tungsten(VI) oxide can be easily synthesized starting from a standard light bulb. The reaction consists in the oxidation at high temperatures (T ≈ 2000 – 3000° C) of a tungsten filament in presence of air; conditions which can be easily achieved by connecting a broken light bulb (but with its intact filament) to an AC-power supply of 110 volts. The vapor of WO3 is condensed into a beaker in a quantity enough to be characterized by infrared spectroscopy. The experiment is very funny, inexpensive and allows to the teacher to link several topics in current chemistry and physics of the tungsten oxides, such as their nomenclature and technological applications (i.e. electrochromic devices, gasochromic sensors, superalloys or as it is used in home: As a “simple” emisor of light!).</span>


2015 ◽  
Vol 771 ◽  
pp. 145-148 ◽  
Author(s):  
Muhammad Miftahul Munir ◽  
Dian Ahmad Hapidin ◽  
Khairurrijal

Research on nanofiber materials is actively done around the world today. Various types of nanofibers have been synthesized using an electrospinning technique. The most important component when synthesizing nanofibers using the electrospinning technique is a DC high voltage power supply. Some requirements must be fulfilled by the high voltage power supply, i.e., it must be adjustable and its output voltage reaches tens of kilovolts. This paper discusses the design and development of a high voltage power supply using a diode-split transformer (DST)-type high voltage flyback transformer (HVFBT). The DST HVFBT was chosen because of its simplicity, compactness, inexpensiveness, and easiness of finding it. A pulse-width modulation (PWM) circuit with controlling frequency and duty cycle was fed to the DST HVFBT. The high voltage power supply was characterized by the frequency and duty cycle dependences of its output voltage. Experimental results showed that the frequency and duty cycle affect the output voltage. The output voltage could be set from 1 to 18 kV by changing the duty cycle. Therefore, the nanofibers could be synthesized by employing the developed high voltage power supply.


2021 ◽  
Vol 320 ◽  
pp. 01015
Author(s):  
E.P. Matafonova ◽  
S.B. Burkhanov

To control the intensity of the light flux when fishing saury it is necessary to widely change the voltage of the lighting fishing equipment. It is reasonable to carry out this by controlling additionally installed thyristor regulators supplying individual symmetric three-phase groups of light sources that will ensure balanced loading of the synchronous generator stator windings. In this research the features of using a thyristor voltage regulator in a four-wire system of ship power supply are studied based on mathematical analysis, conclusions are made using computer modeling and the use of current limiting reactors is justified.


2021 ◽  
Vol 1 (1(57)) ◽  
pp. 30-33
Author(s):  
Ihor Helzhynsky ◽  
Stepan Kutsiy ◽  
Andriy Veryha ◽  
Khrystyna Ivaniuk ◽  
Taras Dudok

The research object of this work is the parameters of organic light-emitting diodes, namely power and luminous flux. Determination of these parameters can be carried out using a photodiode and requires measuring the dark current of the sensor (photodiode), measuring the current of the photodiode when illuminated by the LED under investigation. And also take into account the relationship between the light flux received by the sensor and its output current, and take into account the spectral characteristics of the sensor. Calculate the investigated parameters of the LED based on the measurements. Carrying out these measurements requires laboratory instruments and workplace organization, and further calculations are routine work. It is possible to increase the measurement accuracy by improving the existing methods for measuring the required parameters, and it is possible to automate the process of measurements and calculations using a modern microprocessor radioelement base. Microcontrollers are widespread such radioelements. They have the necessary peripherals for independent operation and have sufficient computing power to implement the required measuring device. Its application makes it possible to automate the measurement process, carry out the necessary calculations, save correction constants, accumulate and process the obtained data, analyze these received data, exchange data with a computer, etc. So, the work is aimed at developing a methodology that will allow the simultaneous measurement of power and luminous flux of planar light sources. And also on the feasibility of this technique in the device and software with the ability to measure the power of the light source in an arbitrary band of the spectral visible range. Thus, it is possible to determine what power in watts a light source emits with the dynamics of supply currents in the optical bands, knowing the spectrum of this source without using glass filters. So, the result of applying the technique is to determine the power of light radiation (in watts) or the luminous flux (in lumens) of the emitter (light sources).


2020 ◽  
Vol 8 (1) ◽  
pp. 25-34
Author(s):  
Khoirul Effendi ◽  
◽  
Junaidi Junaidi ◽  
Sri Wahyu Suciyati ◽  
◽  
...  

Research about power supplies has been developed for various requirement. The power supply is used to supply electronic devices and laboratory-scale equipment, one of which is electrospinner. Electrospinner is an instrument used to make nanofibers consisting of several components, namely: power supply, high voltage, syringe pump, and collector drum. Electrospinner requires a stable supply of voltage so that the system can work well and requires a lot of voltage supply to supply components from the electrospinner. Arduino-based switching mode power supply (SMPS) is designed in this research. Arduino-based SMPS makes it possible to produce a stable supply with many outputs. Arduino as a PWM generator is used to control the power supply output voltage based on duty cycle. The results of the study addressed the duty cycle affecting the output of the power supply. The output voltage generated by the power supply can be set from 0-100 V with an accuracy of 98.19%, an error of 1.81% and a precision of 0.02% which is stated by the variation of the coefficient. The power supply produced also has an extra output voltage of 15 VCT and 15 V.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012043
Author(s):  
Waluyo ◽  
F Hadiatna ◽  
A Widura ◽  
P Setiana

Abstract Increasing population and human needs have an impact on increasing the need for electrical energy. One of them is for lighting needs. Therefore, it is necessary to save the lighting system so that energy consumption is minimum and the need for lighting is optimal, by controlling light dimming. This paper presents an implementation and testing of a dimming light control using an Arduino Uno microcontroller. The circuit used a 12-volt power supply, as a voltage source, to increase to 42 volts, to meet a lamp voltage, through a dc-dc converter. After obtaining the maximum voltage, a MOSFET cut off the voltage according to the desired light or performance level. The duty cycle was directly proportional to the output voltage, using a PWM coding to get the necessary light intensity. Some testing was conducted, including the measurement point shifting to the side. The testing results show that PMW and LDR decreased as the duty cycle increased. Nevertheless, both decreasing are different, the PWM decreased linearly with a gradient of -2.55 and the LDR decreased hyperbolically. While, the illuminance, current, and power rose as the duty cycle increased. The illuminance increased, tent to be saturated, as the power increased. However, the illuminance was reduced as the PWM and LDR increased. The illuminance decreased slightly as the measurement points shifted to the side.


2022 ◽  
Vol 1216 (1) ◽  
pp. 012005
Author(s):  
V. Gyurov ◽  
G. Ivanova

Abstract The report presents an analysis of modern technical solutions for shore power supply of a specific class of passenger ships - luxury yachts for charter trips. The design data of a motor yacht in its different operating modes are considered, as well as the energy mix related to the fuel consumption at shore supply of the yacht during its stay at the port. The use of modern technical systems for shore supply includes the application of specific frequency converters, through which compatibility between the different voltage standards and the frequency for different shore power supply systems is realized. The costs of onshore power, compared to those of marine fuel, can be calculated from the current prices of onshore electricity and the energy produced from its own generators. The analysis of the basic design data of the motor yacht and the assessment of the energy costs on board, fuel economy and emission reductions will provide a clear answer to the advantages of the power supply from the shore of the vessel.


2021 ◽  
Vol 412 ◽  
pp. 3-9
Author(s):  
Victor Velazquez-Martínez ◽  
Luz Yazmin Villagrán-Villegas ◽  
Miguel Patiño-Ortiz ◽  
Julián Patiño-Ortiz ◽  
Delia Valles-Rosales ◽  
...  

The solar light bulb is a one-liter bottle filled with water that uses the refraction of sunlight. In many places, it is not expected the consumption of 1-liter bottles but other capacities. This study shows the effect of the shape of the PET bottles and how the capacity influences the luminous flux resulting from the solar refraction. A total of nine solar bulb models were used with different shapes and capacities (600 mL, 1 L, and 1.5 L). The results showed no interaction between the two factors where the best luminous flux was obtained using the 1 L and 1.5 L bottles regardless of the shape, ranging from 116 to 143 lux. This outcome expands the variety of PET bottles that can be recycled to build solar light bulbs.


Sign in / Sign up

Export Citation Format

Share Document