scholarly journals Design and development of soft robotic hand for vertical farming in spacecraft

Author(s):  
Aswath Suresh ◽  
Ganesha Udupa ◽  
Dhruv Gaba

<p>For colonization in deep space we need to explore the feasibility of a bioregenerative system in microgravity or artificial gravity environments. The process has various complexities form ranging to biological obstacles to engineering limitations of the spacecraft. Concentration of microbes in the confinements of a spacecraft can be fatal for the crew. In this paper, a solution to the elevated microbial levels by farming using robots is discussed. The soft robotic arm is made up of Asymmetric Flexible Pneumatic Actuator (AFPA). The AFPA under internal pressure will curve in the direction of the side having greater thickness as the expansion of the thinner side (outside radius) will be more than thicker side (inside radius) due to differential expansion and moment induced due to eccentricity. Simulation results demonstrate that bending based on AFPA can meet the designed requirement of application. The AFPA is used for five fingers of the robotic hand. The safe, soft touch and gentle motion of the bellow (AFPA) gives the feel of real human hand. The internal pressure of the AFPA is controlled using a solenoid valve which is interfaced using an Arduino microcontroller for hand like moves. The bending of the fingers and degree of freedom (DOF) of the joints of the hand is controlled using an IMU and flex sensor. Wireless connection of the hand and the control system is implemented using XBee pro 60mW with a range of 1 miles.The pneumatic soft robotic hand is made up of solenoid valve, Mini Compressor, AFPA bellow, and Servos. This soft robotic hand has many advantages such as good adaptability, simple structure, small size, high flexibility and less energy loss. As an extension Manual control of the robot using a virtual reality environment and well as some possible aspects of an automated farming systems can be considered as future additions.</p>

This paper focuses on the design and development of Prosthetic hand to help differently-able people who lost their hands due to accidents and diseases. Our research purpose is to develop a master and slave robotic system that will be a substitute for the lost hand to do the day-to-day activities of a person. The person has to wear smart gloves in the hand to do gesture action. The gloves will able to transfer the hand gestures of differently-able people to react suitably and move the hand gripper (which contains spring coils similar to bones in human hand) based on the data from smart gloves. The methodology behind this research is that the analog signals produced in the flex sensor due to the gesture action are transferred to the servo motors to do a similar action in the 3D printed prosthetic hand through the Wi-Fi module. This research project involves two Arduino microcontrollers for communicating and controlling applications in both master and slave sections. A number of flex sensors are placed in the glove to get readings of the motion of human fingers and it is transmitted through the Wi-Fi module by using the Arduino microcontroller. The transmitted signals are received by the Wi-Fi module in the slave section through the Arduino microcontroller and further uses this signal to control various servo motors and it controls the slave robotic hand by using the ropes attached between the servo motor and 3D printed parts. Not only for differently-able people, but the enlarged model of this project can also be used in industries to handle hazardous, harmful, high temperatures and harmful things.


2019 ◽  
Vol 9 (18) ◽  
pp. 3751 ◽  
Author(s):  
Grant Rudd ◽  
Liam Daly ◽  
Vukica Jovanovic ◽  
Filip Cuckov

We present the design and validation of a low-cost, customizable and 3D-printed anthropomorphic soft robotic hand exoskeleton for rehabilitation of hand injuries using remotely administered physical therapy regimens. The design builds upon previous work done on cable actuated exoskeleton designs by implementing the same kinematic functionality, but with the focus shifted to ease of assembly and cost effectiveness as to allow patients and physicians to manufacture and assemble the hardware necessary to implement treatment. The exoskeleton was constructed solely from 3D-printed and widely available off-the-shelf components. Control of the actuators was realized using an Arduino microcontroller, with a custom-designed shield to facilitate ease of wiring. Tests were conducted to verify that the range of motion of the digits and the forces exerted at the fingertip coincided with those of a healthy human hand.


Author(s):  
Abhay Patil

Abstract: There are roughly 21 million handicapped people in India, which is comparable to 2.2% of the complete populace. These people are affected by various neuromuscular problems. To empower them to articulate their thoughts, one can supply them with elective and augmentative correspondence. For this, a Brain-Computer Interface framework (BCI) has been assembled to manage this specific need. The basic assumption of the venture reports the plan, working just as a testing impersonation of a man's arm which is intended to be powerfully just as kinematically exact. The conveyed gadget attempts to take after the movement of the human hand by investigating the signs delivered by cerebrum waves. The cerebrum waves are really detected by sensors in the Neurosky headset and produce alpha, beta, and gamma signals. Then, at that point, this sign is examined by the microcontroller and is then acquired onto the engineered hand by means of servo engines. A patient that experiences an amputee underneath the elbow can acquire from this specific biomechanical arm. Keywords: Brainwaves, Brain Computer Interface, Arduino, EEG sensor, Neurosky Mindwave Headset, Robotic arm


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Taylor D. Niehues ◽  
Ashish D. Deshpande

The anatomically correct testbed (ACT) hand mechanically simulates the musculoskeletal structure of the fingers and thumb of the human hand. In this work, we analyze the muscle moment arms (MAs) and thumb-tip force vectors in the ACT thumb in order to compare the ACT thumb's mechanical structure to the human thumb. Motion data are used to determine joint angle-dependent MA models, and thumb-tip three-dimensional (3D) force vectors are experimentally analyzed when forces are applied to individual muscles. Results are presented for both a nominal ACT thumb model designed to match human MAs and an adjusted model that more closely replicates human-like thumb-tip forces. The results confirm that the ACT thumb is capable of faithfully representing human musculoskeletal structure and muscle functionality. Using the ACT hand as a physical simulation platform allows us to gain a better understanding of the underlying biomechanical and neuromuscular properties of the human hand to ultimately inform the design and control of robotic and prosthetic hands.


Author(s):  
Thomas E. Pillsbury ◽  
Ryan M. Robinson ◽  
Norman M. Wereley

Pneumatic artificial muscles (PAMs) are used in robotics applications for their light-weight design and superior static performance. Additional PAM benefits are high specific work, high force density, simple design, and long fatigue life. Previous use of PAMs in robotics research has focused on using “large,” full-scale PAMs as actuators. Large PAMs work well for applications with large working volumes that require high force and torque outputs, such as robotic arms. However, in the case of a compact robotic hand, a large number of degrees of freedom are required. A human hand has 35 muscles, so for similar functionality, a robot hand needs a similar number of actuators that must fit in a small volume. Therefore, using full scale PAMs to actuate a robot hand requires a large volume which for robotics and prosthetics applications is not feasible, and smaller actuators, such as miniature PAMs, must be used. In order to develop a miniature PAM capable of producing the forces and contractions needed in a robotic hand, different braid and bladder material combinations were characterized to determine the load stroke profiles. Through this characterization, miniature PAMs were shown to have comparably high force density with the benefit of reduced actuator volume when compared to full scale PAMs. Testing also showed that braid-bladder interactions have an important effect at this scale, which cannot be modeled sufficiently using existing methods without resorting to a higher-order constitutive relationship. Due to the model inaccuracies and the limited selection of commercially available materials at this scale, custom molded bladders were created. PAMs created with these thin, soft bladders exhibited greatly improved performance.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1470 ◽  
Author(s):  
Flaviu Ionuț Birouaș ◽  
Radu Cătălin Țarcă ◽  
Simona Dzitac ◽  
Ioan Dzitac

Robotic exoskeletons are a trending topic in both robotics and rehabilitation therapy. The research presented in this paper is a summary of robotic exoskeleton development and testing for a human hand, having application in motor rehabilitation treatment. The mechanical design of the robotic hand exoskeleton implements a novel asymmetric underactuated system and takes into consideration a number of advantages and disadvantages that arose in the literature in previous mechanical design, regarding hand exoskeleton design and also aspects related to the symmetric and asymmetric geometry and behavior of the biological hand. The technology used for the manufacturing and prototyping of the mechanical design is 3D printing. A comprehensive study of the exoskeleton has been done with and without the wearer’s hand in the exoskeleton, where multiple feedback sources are used to determine symmetric and asymmetric behaviors related to torque, position, trajectory, and laws of motion. Observations collected during the experimental testing proved to be valuable information in the field of augmenting the human body with robotic devices.


2017 ◽  
Vol 117 (5) ◽  
pp. 2025-2036 ◽  
Author(s):  
Abdeldjallil Naceri ◽  
Alessandro Moscatelli ◽  
Robert Haschke ◽  
Helge Ritter ◽  
Marco Santello ◽  
...  

Because of the complex anatomy of the human hand, in the absence of external constraints, a large number of postures and force combinations can be used to attain a stable grasp. Motor synergies provide a viable strategy to solve this problem of motor redundancy. In this study, we exploited the technical advantages of an innovative sensorized object to study unconstrained hand grasping within the theoretical framework of motor synergies. Participants were required to grasp, lift, and hold the sensorized object. During the holding phase, we repetitively applied external disturbance forces and torques and recorded the spatiotemporal distribution of grip forces produced by each digit. We found that the time to reach the maximum grip force during each perturbation was roughly equal across fingers, consistent with a synchronous, synergistic stiffening across digits. We further evaluated this hypothesis by comparing the force distribution of human grasping vs. robotic grasping, where the control strategy was set by the experimenter. We controlled the global hand stiffness of the robotic hand and found that this control algorithm produced a force pattern qualitatively similar to human grasping performance. Our results suggest that the nervous system uses a default whole hand synergistic control to maintain a stable grasp regardless of the number of digits involved in the task, their position on the objects, and the type and frequency of external perturbations. NEW & NOTEWORTHY We studied hand grasping using a sensorized object allowing unconstrained finger placement. During object perturbation, the time to reach the peak force was roughly equal across fingers, consistently with a synergistic stiffening across fingers. Force distribution of a robotic grasping hand, where the control algorithm is based on global hand stiffness, was qualitatively similar to human grasping. This suggests that the central nervous system uses a default whole hand synergistic control to maintain a stable grasp.


2014 ◽  
Vol 11 (03) ◽  
pp. 1450019 ◽  
Author(s):  
Maxime Chalon ◽  
Alexander Dietrich ◽  
Markus Grebenstein

The impressive manipulation capabilities of the human hand are undoubtedly related to the thumb opposition. Such a versatility is highly desirable in the context of humanoid robots, in particular when performing object manipulation. In the present case, a robotic hand with size, forces, velocity, and shape comparable to the human one, is envisioned. Unlike most robotic designs — where the fingers are modular and the thumb is simply a finger placed in opposition — the thumb benefits from an intensive functional analysis. This paper details the design method of the thumb of the Awiwi hand, the hand of the Integrated Hand Arm System project of DLR. First, several guidelines are presented that are fused and, with the help of a novel optimization method, lead to the final design. Finally, the design is evaluated by the means of biomedical tests on the realized hardware.


Sign in / Sign up

Export Citation Format

Share Document