ADAMTS5 promotes murine adipogenesis and visceral adipose tissue expansion

2016 ◽  
Vol 116 (10) ◽  
pp. 694-704 ◽  
Author(s):  
Dries Bauters ◽  
Ilse Scroyen ◽  
Rebecca Deprez-Poulain ◽  
H. Roger Lijnen

SummaryEnhanced expression of the aggrecanase ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin type 1 motifs; member 5) has been observed in adipose tissue (AT) of obese rodents. Here, we have investigated the role of ADAMTS5 in adipogenesis, AT expansion and associated angiogenesis. In vitro differentiation of precursor cells into mature adipocytes was studied using murine embryonic fibroblasts (MEF) derived from wild-type (Adamts5 +/+) and ADAMTS5 deficient (Adamts5 -/-) mice, or 3T3-F442A preadipocytes with stable gene silencing of Adamts5. De novo adipogenesis was monitored by injection of 3T3-F442A cells with or without Adamts5 knockdown in Nude mice. Furthermore, Adamts5+/+ and Adamts5/- mice were kept on a high-fat diet (HFD) to monitor AT development. Adamts5-/- MEF, as well as 3T3-F442A preadipocytes with Adamts5 knockdown, showed significantly reduced differentiation as compared to control cells. In mice, de novo formed fat pads arising from 3T3-F442A cells with Adamts5 knockdown were significantly smaller as compared to controls. After 15 or 25 weeks on HFD, total body weight and subcutaneous AT weight were similar for Adamts5++/+ and Adamts5-/- mice, but visceral/gonadal fat mass was significantly lower for Adamts5-/-mice. These data were confirmed by magnetic resonance imaging. In addition, the blood vessel density in adipose tissue was higher for Adamts5-/- mice kept on HFD. In conclusion, our data support the concept that ADAMTS5 promotes adipogenesis in vitro and in vivo, as well as development of visceral AT and associated angiogenesis in mice kept on HFD.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mylène Tajan ◽  
Marc Hennequart ◽  
Eric C. Cheung ◽  
Fabio Zani ◽  
Andreas K. Hock ◽  
...  

AbstractMany tumour cells show dependence on exogenous serine and dietary serine and glycine starvation can inhibit the growth of these cancers and extend survival in mice. However, numerous mechanisms promote resistance to this therapeutic approach, including enhanced expression of the de novo serine synthesis pathway (SSP) enzymes or activation of oncogenes that drive enhanced serine synthesis. Here we show that inhibition of PHGDH, the first step in the SSP, cooperates with serine and glycine depletion to inhibit one-carbon metabolism and cancer growth. In vitro, inhibition of PHGDH combined with serine starvation leads to a defect in global protein synthesis, which blocks the activation of an ATF-4 response and more broadly impacts the protective stress response to amino acid depletion. In vivo, the combination of diet and inhibitor shows therapeutic efficacy against tumours that are resistant to diet or drug alone, with evidence of reduced one-carbon availability. However, the defect in ATF4-response seen in vitro following complete depletion of available serine is not seen in mice, where dietary serine and glycine depletion and treatment with the PHGDH inhibitor lower but do not eliminate serine. Our results indicate that inhibition of PHGDH will augment the therapeutic efficacy of a serine depleted diet.


2016 ◽  
Vol 310 (1) ◽  
pp. R55-R65 ◽  
Author(s):  
Yun-Hee Lee ◽  
Sang-Nam Kim ◽  
Hyun-Jung Kwon ◽  
Krishna Rao Maddipati ◽  
James G. Granneman

De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44− macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lisa Suwandhi ◽  
Irem Altun ◽  
Ruth Karlina ◽  
Viktorian Miok ◽  
Tobias Wiedemann ◽  
...  

AbstractAdipose tissue expansion, as seen in obesity, is often metabolically detrimental causing insulin resistance and the metabolic syndrome. However, white adipose tissue expansion at early ages is essential to establish a functional metabolism. To understand the differences between adolescent and adult adipose tissue expansion, we studied the cellular composition of the stromal vascular fraction of subcutaneous adipose tissue of two and eight weeks old mice using single cell RNA sequencing. We identified a subset of adolescent preadipocytes expressing the mature white adipocyte marker Asc-1 that showed a low ability to differentiate into beige adipocytes compared to Asc-1 negative cells in vitro. Loss of Asc-1 in subcutaneous preadipocytes resulted in spontaneous differentiation of beige adipocytes in vitro and in vivo. Mechanistically, this was mediated by a function of the amino acid transporter ASC-1 specifically in proliferating preadipocytes involving the intracellular accumulation of the ASC-1 cargo D-serine.


2021 ◽  
Vol 22 (21) ◽  
pp. 11881
Author(s):  
Peter Micallef ◽  
Yanling Wu ◽  
Marco Bauzá-Thorbrügge ◽  
Belén Chanclón ◽  
Milica Vujičić ◽  
...  

We sought to identify therapeutic targets for breast cancer by investigating the metabolic symbiosis between breast cancer and adipose tissue. To this end, we compared orthotopic E0771 breast cancer tumors that were in direct contact with adipose tissue with ectopic E0771 tumors in mice. Orthotopic tumors grew faster and displayed increased de novo lipogenesis compared to ectopic tumors. Adipocytes release large amounts of lactate, and we found that both lactate pretreatment and adipose tissue co-culture augmented de novo lipogenesis in E0771 cells. Continuous treatment with the selective FASN inhibitor Fasnall dose-dependently decreased the E0771 viability in vitro. However, daily Fasnall injections were effective only in 50% of the tumors, while the other 50% displayed accelerated growth. These opposing effects of Fasnall in vivo was recapitulated in vitro; intermittent Fasnall treatment increased the E0771 viability at lower concentrations and suppressed the viability at higher concentrations. In conclusion, our data suggest that adipose tissue enhances tumor growth by stimulating lipogenesis. However, targeting lipogenesis alone can be deleterious. To circumvent the tumor’s ability to adapt to treatment, we therefore believe that it is necessary to apply an aggressive treatment, preferably targeting several metabolic pathways simultaneously, together with conventional therapy.


1990 ◽  
Vol 259 (4) ◽  
pp. E586-E592 ◽  
Author(s):  
D. A. Bushinsky ◽  
J. M. Chabala ◽  
R. Levi-Setti

To determine whether Ca incorporation from medium into cultured bone represents normal mineralization, we labeled some neonatal mouse calvariae in vitro and others in vivo with the stable isotope 44Ca and compared surface label localization with a scanning ion microprobe utilizing secondary ion mass spectrometry. To label in vitro, we incubated live calvariae in medium containing 40Ca or 44Ca for 3 h. Compared with a 44Ca/40Ca ratio of 0.020 with 1 mM 40Ca, the ratio with 1 mM 44Ca was 0.135 and with 2 mM 44Ca was 0.556. Erosion revealed a marked decrease in 44Ca/40Ca with depth. To label in vivo, we subcutaneously injected 40Ca or 44Ca into mice equal to a percentage of their total body weight and dissected the calvariae 24 h later. Compared with a 44Ca/40Ca ratio of 0.021 with 2% 40Ca, the ratio with 2% 44Ca was 0.120 and with 6% 44Ca was 0.205. Erosion revealed only a slight decrease in 44Ca/40Ca with depth. Elemental distribution maps of in vivo labeled samples show broad deposition of 44Ca, whereas maps of in vitro labeled bones show 44Ca preferentially localized at the surface in contact with the medium. Thus calvariae can be labeled with 44Ca both in vitro and in vivo. However, the differing patterns of isotope localization under the conditions of this study indicate that in vitro Ca deposition differs from normal in vivo bone mineralization.


2019 ◽  
Vol 21 (1) ◽  
pp. 41 ◽  
Author(s):  
Saioa Gómez-Zorita ◽  
Jenifer Trepiana ◽  
Maitane González-Arceo ◽  
Leixuri Aguirre ◽  
Iñaki Milton-Laskibar ◽  
...  

In recent years, microalgae have attracted great interest for their potential applications in nutraceutical and pharmaceutical industry as an interesting source of bioactive medicinal products and food ingredients with anti-oxidant, anti-inflammatory, anti-cancer, and anti-microbial properties. One potential application for bioactive microalgae compounds is obesity treatment. This review gathers together in vitro and in vivo studies which address the anti-obesity effects of microalgae extracts. The scientific literature supplies evidence supporting an anti-obesity effect of several microalgae: Euglena gracilis, Phaeodactylum tricornutum, Spirulina maxima, Spirulina platensis, or Nitzschia laevis. Regarding the mechanisms of action, microalgae can inhibit pre-adipocyte differentiation and reduce de novo lipogenesis and triglyceride (TG) assembly, thus limiting TG accumulation. Increased lipolysis and fatty acid oxidation can also be observed. Finally, microalgae can induce increased energy expenditure via thermogenesis activation in brown adipose tissue, and browning in white adipose tissue. Along with the reduction in body fat accumulation, other hallmarks of individuals with obesity, such as enhanced plasma lipid levels, insulin resistance, diabetes, or systemic low-grade inflammation are also improved by microalgae treatment. Not only the anti-obesity effect of microalgae but also the improvement of several comorbidities, previously observed in preclinical studies, has been confirmed in clinical trials.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Muhammad Imran Khan ◽  
Muhammad Zubair Khan ◽  
Jin Hyuk Shin ◽  
Tia Sun Shin ◽  
Young Bok Lee ◽  
...  

Obesity is a public health problem characterized by increased body weight due to abnormal adipose tissue expansion. Bioactive compound consumption from the diet or intake of dietary supplements is one of the possible ways to control obesity. Natural products with adipogenesis-regulating potential act as obesity treatments. We evaluated the synergistic antiangiogenesis, antiadipogenic and antilipogenic efficacy of standardized rebaudioside A, sativoside, and theasaponin E1 formulations (RASE1) in vitro in human umbilical vein endothelial cells (HUVECs), 3T3-L1 preadipocytes respectively, and in vivo using a high-fat and carbohydrate diet-induced obesity mouse model. Orlistat was used as a positive control, while untreated cells and animals were normal controls (NCs). Adipose tissue, liver, and blood were analyzed after dissection. Extracted stevia compounds and green tea seed saponin E1 exhibited pronounced antiobesity effects when combined. RASE1 inhibited HUVEC proliferation and tube formation by suppressing VEGFR2, NF-κB, PIK3, and-catenin beta-1 expression levels. RASE1 inhibited 3T3-L1 adipocyte differentiation and lipid accumulation by downregulating adipogenesis- and lipogenesis-promoting genes. RASE1 oral administration reduced mouse body and body fat pad weight and blood cholesterol, TG, ALT, AST, glucose, insulin, and adipokine levels. RASE1 suppressed adipogenic and lipid metabolism gene expression in mouse adipose and liver tissues and enhanced AMP-activated protein kinase levels in liver and adipose tissues and in serum adiponectin. RASE1 suppressed the NF-κB pathway and proinflammatory cytokines IL-10, IL-6, and TNF-α levels in mice which involve inflammation and progression of obesity. The overall results indicate RASE1 is a potential therapeutic formulation and functional food for treating or preventing obesity and inflammation.


2020 ◽  
Vol 21 (5) ◽  
pp. 1623 ◽  
Author(s):  
Natàlia Riera-Heredia ◽  
Esmail Lutfi ◽  
Albert Sánchez-Moya ◽  
Joaquim Gutiérrez ◽  
Encarnación Capilla ◽  
...  

Fish are rich in n-3 long-chain polyunsaturated fatty acids (LC-PUFA) such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Due to the increasing use of vegetable oils (VO), their proportion in diets has lowered, affecting lipid metabolism and fillet composition. Rainbow trout cultured preadipocytes were treated with representative FA found in fish oils (EPA and DHA) or VO (linoleic, LA and alpha-linolenic, ALA acids), while EPA and LA were also orally administered, to evaluate their effects on adipogenesis and lipid metabolism. In vitro, all FA increased lipid internalization, with ALA producing the highest effect, together with upregulating the FA transporter fatp1. In vivo, EPA or LA increased peroxisome proliferator-activated receptors ppara and pparb transcripts abundance in adipose tissue, suggesting elevated β-oxidation, contrary to the results obtained in liver. Furthermore, the increased expression of FA synthase (fas) and the FA translocase/cluster of differentiation (cd36) in adipose tissue indicated an enhanced uptake of lipids and lipogenesis de novo, whereas stable or low hepatic expression of genes involved in lipid transport and turnover was found. Thus, fish showed a similar tissue metabolic response to the short-term availability of EPA or LA in vivo, while in vitro VO-derived FA demonstrated greater potential inducing fat accumulation.


2021 ◽  
Vol 22 (15) ◽  
pp. 7920
Author(s):  
Myroslava Mytsyk ◽  
Giulia Cerino ◽  
Gregory Reid ◽  
Laia Gili Sole ◽  
Friedrich S. Eckstein ◽  
...  

The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.


Sign in / Sign up

Export Citation Format

Share Document