scholarly journals Pharmacological Approaches to Attenuate Inflammation and Obesity with Natural Products Formulations by Regulating the Associated Promoting Molecular Signaling Pathways

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Muhammad Imran Khan ◽  
Muhammad Zubair Khan ◽  
Jin Hyuk Shin ◽  
Tia Sun Shin ◽  
Young Bok Lee ◽  
...  

Obesity is a public health problem characterized by increased body weight due to abnormal adipose tissue expansion. Bioactive compound consumption from the diet or intake of dietary supplements is one of the possible ways to control obesity. Natural products with adipogenesis-regulating potential act as obesity treatments. We evaluated the synergistic antiangiogenesis, antiadipogenic and antilipogenic efficacy of standardized rebaudioside A, sativoside, and theasaponin E1 formulations (RASE1) in vitro in human umbilical vein endothelial cells (HUVECs), 3T3-L1 preadipocytes respectively, and in vivo using a high-fat and carbohydrate diet-induced obesity mouse model. Orlistat was used as a positive control, while untreated cells and animals were normal controls (NCs). Adipose tissue, liver, and blood were analyzed after dissection. Extracted stevia compounds and green tea seed saponin E1 exhibited pronounced antiobesity effects when combined. RASE1 inhibited HUVEC proliferation and tube formation by suppressing VEGFR2, NF-κB, PIK3, and-catenin beta-1 expression levels. RASE1 inhibited 3T3-L1 adipocyte differentiation and lipid accumulation by downregulating adipogenesis- and lipogenesis-promoting genes. RASE1 oral administration reduced mouse body and body fat pad weight and blood cholesterol, TG, ALT, AST, glucose, insulin, and adipokine levels. RASE1 suppressed adipogenic and lipid metabolism gene expression in mouse adipose and liver tissues and enhanced AMP-activated protein kinase levels in liver and adipose tissues and in serum adiponectin. RASE1 suppressed the NF-κB pathway and proinflammatory cytokines IL-10, IL-6, and TNF-α levels in mice which involve inflammation and progression of obesity. The overall results indicate RASE1 is a potential therapeutic formulation and functional food for treating or preventing obesity and inflammation.

2020 ◽  
Vol 318 (3) ◽  
pp. E371-E380 ◽  
Author(s):  
Binbin Huang ◽  
Huashan Zhao ◽  
Chen Huang ◽  
Linlin Wu ◽  
Liang Xiang ◽  
...  

Excess androgen-induced obesity has become a public health problem, and its prevalence has increased substantially in recent years. Chemokine-like receptor 1 (CMKLR1), a receptor of chemerin secreted by adipose tissue, is linked to adipocyte differentiation, adipose tissue development, and obesity. However, the effect of CMKLR1 signaling on androgen-mediated adiposity in vivo remains unclear. Using CMKLR1-knockout mice, we constructed an androgen-excess female mouse model through 5α-dihydrotestosterone (DHT) treatment and an androgen-deficient male mouse model by orchidectomy (ORX). For mechanism investigation, we used 2-(α-Naphthoyl) ethyltrimethylammonium iodide (α-NETA), an antagonist of CMKLR1, to suppress CMKLR1 in vivo and wortmannin, a PI3K signaling antagonist, to treat brown adipose tissue (BAT) explant cultures in vitro . Furthermore, we used histological examination and quantitative PCR, as well as Western blot analysis, glucose tolerance tests, and biochemical analysis of serum, to describe the phenotypes and the changes in gene expression. We demonstrated that excess androgen in the female mice resulted in larger cells in the white adipose tissue (WAT) and the BAT, whereas androgen deprivation in the male mice induced a reduction in cell size. Both of these adipocyte size effects could be attenuated in the CMKLR1-knockout mice. CMKLR1 deficiency influenced the effect of androgen treatment on adipose tissue by regulating the mRNA expression of the androgen receptor (AR) and adipocyte markers (such as Fabp4 and Cidea). Moreover, suppression of CMKLR1 by α-NETA could also reduce the extent of the adipocyte cell enlargement caused by DHT. Furthermore, we found that DHT could reduce the levels of phosphorylated ERK (pERK) in the BAT, while CMKLR1 inactivation inhibited this effect, which had been induced by DHT, through the PI3K signaling pathway. These findings reveal an antiobesity role of CMKLR1 deficiency in regulating lipid accumulation, highlighting the scientific importance for the further development of small-molecule CMKLR1 antagonists as fundamental research tools and/or as potential drugs for use in the treatment of adiposity.


2016 ◽  
Vol 40 (3-4) ◽  
pp. 443-452 ◽  
Author(s):  
Lei Song ◽  
Chen Kang ◽  
Yuan Sun ◽  
Wenrui Huang ◽  
Wei Liu ◽  
...  

Background/Aim: Crocetin is a readily bioavailable and bioactive compound extracted from Saffron. Previous studies indicated its various biomedical properties including antioxidant and anti-coagulation potencies. However, its effect on inflammation, notably within the cardiovascular system, has not been investigated yet. In the present study, we utilized human umbilical vein endothelial cell (HUVEC) to elucidate the effect of Crocetin on vascular inflammation. Methods: Cell viability and toxicity were evaluated by MTT and Lactate dehydrogenase (LDH) assay, respectively. Pro-inflammatory chemokine <under>M</under>onocyte Chemoattractant <under>P</under>rotein-1 (MCP-1) and <under>I</under>nter<under>l</under>eukin-8 (IL-8) expressions were determined by RT-PCR and ELISA. With fluorescence labeled U937 cells, we examined immune cell adhesion to the inflamed HUVEC in vitro, which was further confirmed by the H&amp;E staining in the murine subcutaneous endothelium in vivo. Results: Upon Lipopolysaccharide (LPS)-induced inflammatory response in HUVECs, Crocetin ameliorated cell cytotoxicity, suppressed MCP-1 and IL-8 expressions through blocking NF-κB p65 signaling transduction. Moreover, Crocetin inhibited immune cells adhesion and infiltration to inflamed endothelium, which is a key step in inflammatory vascular injury. Conclusions: These findings suggest that Crocetin, a natural herb extract, is a potent suppressor of vascular endothelial inflammation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lisa Suwandhi ◽  
Irem Altun ◽  
Ruth Karlina ◽  
Viktorian Miok ◽  
Tobias Wiedemann ◽  
...  

AbstractAdipose tissue expansion, as seen in obesity, is often metabolically detrimental causing insulin resistance and the metabolic syndrome. However, white adipose tissue expansion at early ages is essential to establish a functional metabolism. To understand the differences between adolescent and adult adipose tissue expansion, we studied the cellular composition of the stromal vascular fraction of subcutaneous adipose tissue of two and eight weeks old mice using single cell RNA sequencing. We identified a subset of adolescent preadipocytes expressing the mature white adipocyte marker Asc-1 that showed a low ability to differentiate into beige adipocytes compared to Asc-1 negative cells in vitro. Loss of Asc-1 in subcutaneous preadipocytes resulted in spontaneous differentiation of beige adipocytes in vitro and in vivo. Mechanistically, this was mediated by a function of the amino acid transporter ASC-1 specifically in proliferating preadipocytes involving the intracellular accumulation of the ASC-1 cargo D-serine.


2016 ◽  
Vol 116 (10) ◽  
pp. 694-704 ◽  
Author(s):  
Dries Bauters ◽  
Ilse Scroyen ◽  
Rebecca Deprez-Poulain ◽  
H. Roger Lijnen

SummaryEnhanced expression of the aggrecanase ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin type 1 motifs; member 5) has been observed in adipose tissue (AT) of obese rodents. Here, we have investigated the role of ADAMTS5 in adipogenesis, AT expansion and associated angiogenesis. In vitro differentiation of precursor cells into mature adipocytes was studied using murine embryonic fibroblasts (MEF) derived from wild-type (Adamts5 +/+) and ADAMTS5 deficient (Adamts5 -/-) mice, or 3T3-F442A preadipocytes with stable gene silencing of Adamts5. De novo adipogenesis was monitored by injection of 3T3-F442A cells with or without Adamts5 knockdown in Nude mice. Furthermore, Adamts5+/+ and Adamts5/- mice were kept on a high-fat diet (HFD) to monitor AT development. Adamts5-/- MEF, as well as 3T3-F442A preadipocytes with Adamts5 knockdown, showed significantly reduced differentiation as compared to control cells. In mice, de novo formed fat pads arising from 3T3-F442A cells with Adamts5 knockdown were significantly smaller as compared to controls. After 15 or 25 weeks on HFD, total body weight and subcutaneous AT weight were similar for Adamts5++/+ and Adamts5-/- mice, but visceral/gonadal fat mass was significantly lower for Adamts5-/-mice. These data were confirmed by magnetic resonance imaging. In addition, the blood vessel density in adipose tissue was higher for Adamts5-/- mice kept on HFD. In conclusion, our data support the concept that ADAMTS5 promotes adipogenesis in vitro and in vivo, as well as development of visceral AT and associated angiogenesis in mice kept on HFD.


2017 ◽  
Vol 95 (6) ◽  
pp. 697-707 ◽  
Author(s):  
In-Chul Lee ◽  
Jongdoo Kim ◽  
Jong-Sup Bae

The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases (drug repositioning). Drug repositioning refers to the development of existing drugs for new indications. Dabrafenib (DAB) is a B-Raf inhibitor and initially used for the treatment of metastatic melanoma therapy. Here, we tested the possible use of DAB in the treatment of lipopolysaccharide (LPS)-mediated vascular inflammatory responses. The anti-inflammatory activities of DAB were determined by measuring permeability, neutrophils adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells (HUVECs) and mice. We found that DAB inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion and transendothelial migration of neutrophils to human endothelial cells. DAB also suppressed LPS-induced hyperpermeability and leukocytes migration in vivo. Furthermore, DAB suppressed the production of tumor necrosis factor-α (TNF-α) or interleukin (IL)-6 and the activation of nuclear factor-κB (NF-κB) or extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, treatment with DAB resulted in reduced LPS-induced lethal endotoxemia. These results suggest that DAB possesses anti-inflammatory functions by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


1997 ◽  
Vol 77 (05) ◽  
pp. 0975-0980 ◽  
Author(s):  
Angel Gálvez ◽  
Goretti Gómez-Ortiz ◽  
Maribel Díaz-Ricart ◽  
Ginés Escolar ◽  
Rogelio González-Sarmiento ◽  
...  

SummaryThe effect of desmopressin (DDAVP) on thrombogenicity, expression of tissue factor and procoagulant activity (PCA) of extracellular matrix (ECM) generated by human umbilical vein endothelial cells cultures (HUVEC), was studied under different experimental conditions. HUVEC were incubated with DDAVP (1, 5 and 30 ng/ml) and then detached from their ECM. The reactivity towards platelets of this ECM was tested in a perfusion system. Coverslips covered with DD A VP-treated ECMs were inserted in a parallel-plate chamber and exposed to normal blood anticoagulated with low molecular weight heparin (Fragmin®, 20 U/ml). Perfusions were run for 5 min at a shear rate of 800 s1. Deposition of platelets on ECMs was significantly increased with respect to control ECMs when DDAVP was used at 5 and 30 ng/ml (p <0.05 and p <0.01 respectively). The increase in platelet deposition was prevented by incubation of ECMs with an antibody against human tissue factor prior to perfusion. Immunofluorescence studies positively detected tissue factor antigen on DDAVP derived ECMs. A chromogenic assay performed under standardized conditions revealed a statistically significant increase in the procoagulant activity of the ECMs produced by ECs incubated with 30 ng/ml DDAVP (p <0.01 vs. control samples). Northern blot analysis revealed increased levels of tissue factor mRNA in extracts from ECs exposed to DDAVP. Our data indicate that DDAVP in vitro enhances platelet adhesion to the ECMs through increased expression of tissue factor. A similar increase in the expression of tissue factor might contribute to the in vivo hemostatic effect of DDAVP.


1997 ◽  
Vol 77 (06) ◽  
pp. 1182-1188 ◽  
Author(s):  
Ulrich M Vischer ◽  
Claes B Wollheinn

Summaryvon Willebrand factor (vWf) is released from endothelial cell storage granules after stimulation with thrombin, histamine and several other agents that induce an increase in cytosolic free calcium ([Ca2+]i). In vivo, epinephrine and the vasopressin analog DDAVP increase vWf plasma levels, although they are thought not to induce vWf release from endothelial cells in vitro. Since these agents act via a cAMP-dependent pathway in responsive cells, we examined the role of cAMP in vWf secretion from cultured human umbilical vein endothelial cells. vWf release increased by 50% in response to forskolin, which activates adenylate cyclase. The response to forskolin was much stronger when cAMP degradation was blocked with IBMX, an inhibitor of phosphodiesterases (+200%), whereas IBMX alone had no effect. vWf release could also be induced by the cAMP analogs dibutyryl-cAMP (+40%) and 8-bromo-cAMP (+25%); although their effect was weak, they clearly potentiated the response to thrombin. Epinephrine (together with IBMX) caused a small, dose-dependent increase in vWf release, maximal at 10-6 M (+50%), and also potentiated the response to thrombin. This effect is mediated by adenylate cyclase-coupled β-adrenergic receptors, since it is inhibited by propranolol and mimicked by isoproterenol. In contrast to thrombin, neither forskolin nor epinephrine caused an increase in [Ca2+]j as measured by fura-2 fluorescence. In addition, the effects of forskolin and thrombin were additive, suggesting that they act through distinct signaling pathways. We found a close correlation between cellular cAMP content and vWf release after stimulation with epinephrine and forskolin. These results demonstrate that cAMP-dependent signaling events are involved in the control of exocytosis from endothelial cells (an effect not mediated by an increase in [Ca2+]i) and provide an explanation for epinephrine-induced vWf release.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


Sign in / Sign up

Export Citation Format

Share Document