scholarly journals Influence of seasonal and edaphic factors on the diversity of scolopendromorph centipedes (Chilopoda: Scolopendromorpha) and general observations on their ecology from Kerala, India

2017 ◽  
Vol 9 (7) ◽  
pp. 10386
Author(s):  
Dhanya Balan ◽  
P. M. Sureshan

Scolopendromorph centipedes (Chilopoda: Scolopendromorpha) are a diverse group of invertebrate communities, which play significant, but often poorly acknowledged or understood roles in the delivery of soil ecosystem services.  In the present paper we analyze the impact of seasonal and edaphic factors on the species diversity of scolopendromorph centipedes based on the field studies conducted in three selected sites.  The study sites included a protected forest ecosystem, an undisturbed isolated hillock and a residential plot at Kozhikode District, Kerala, India.  The study was performed from April 2011 to November 2012.  Overall 486 individuals belonging to 18 species under the families Cryptopidae and Scolopendridae were collected.  The range of Shannon-Wiener diversity was 0.89–2.58 and Simpson diversity was 1.91–13.69.  Species diversity is also influenced by variations in seasons and various physico–chemical properties of soil in the study area. General observations on parental care, moulting, hibernation and ectoparasitism were also included.

2017 ◽  
Vol 9 (2) ◽  
pp. 1187-1193
Author(s):  
Akankasha Ankita Ekka ◽  
Dileep Kumar ◽  
Anand Prakash Singh ◽  
Awtar Singh

Adoption of unsuitable production system may lead to deterioration of soil physico-chemical properties. Hence, it becomes important to assess the impact of various production systems. For this purpose, a study was carried out to find out variation in physico-chemical properties of soil in agri-horti system based four orchards of Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, India. Soil samples were collected from the orchards of custard apple (Annona reticulate), guava (Psidium guajava), bael (Aegle marmelos) and crane berry (Carissa carandas) from two depths (0-15 and 15-30 cm) separately within canopy and out of canopy of different plants. The results of the study revealed that all the agri-horti systems were effective in bringing gradual improvement in the physico-chemical properties of the soil. Among different orchards tried, the custard apple system resulted in the highest improvement in temperature (27.16 oC), moisture (24.53 %) and water-holding capacity (41.80 %), whereas crane berry based system recorded better result in case of bulk density, porosity, electrical conductivity, pH, organic carbon, available N (187.55 kg ha-1) and K (193.46 kg ha-1). Custard apple based system recorded highest DTPA extractable micronutrients (Zn 0.54, Fe 17.23, Cu 0.88 and Mn14.72 mg ka-1).


2021 ◽  
Vol 44 (1) ◽  
pp. 5-11
Author(s):  
Hari Sankhyan ◽  
Jyoti Dhiman ◽  
Krishan Chand ◽  
Prachi . ◽  
Karishma .

Study on Physico chemical properties of soil is important for sustainable management of agricultural crops, field trees and for their economic growth. Here, we quantify the impact of soil nutrient variation on the population growth of Grewia optiva Drummond with variable climate and heterogeneous soils. The impacts on growth parameters (tree height, crown spread, leaf traits, fruit dimensions) of selected populations of Grewia optiva Drummond statistically analyzed using one way ANOVA and Pearson correlation coefficient. Five composite soil samples were taken at 15-30cm depth, on seven selected districts of Himachal Pradesh viz., total 35 samples were analyzed for physiochemical properties. Soil of Mandi district registered with acidic pH as compared to soil pH of other districts. There was significant difference in pH, OC, EC, N, P, K and in Bulk density within selected population of each district. pH range of moderately acidic to moderately alkaline (according to standard soil classification) founded best for growth of this species. There was highly positive correlation observed between Nitrogen and leaf area(0.33), Phosphorus and leaf area (0.45). 100 leaf fresh weight showed highly positive correlation with Nitrogen (0.37) and organic carbon (0.39).100 leaf dry weight showed highly positive correlation with Nitrogen and Organic Carbon. Crown spread showed highly positive correlation with Organic carbon (0.29), Nitrogen (0.38) and with Phosphorus (0.30). Moderately Positive correlation observed between Potassium and 100 fruit dry weight (0.15). 50% of soil texture observed as sandy loamy and sandy clay loamy.


2020 ◽  
Vol 13 ◽  
pp. 117862212094484
Author(s):  
Carla SS Ferreira ◽  
Adélcia Veiga ◽  
Ana Caetano ◽  
Oscar Gonzalez-Pelayo ◽  
Anne Karine-Boulet ◽  
...  

Vines are one of the most ancient crops, with great relevance worldwide but especially in wine-growing areas in Southern Europe. In the Bairrada wine region of north-central Portugal, vineyards have long been managed intensively, with frequent tillage and application of fertilizers and phytochemical products. During the last decade, however, these conventional practices are increasingly becoming substituted by more sustainable management practices, in particular integrated production (IP) and, to a lesser degree, no-tillage (NT) and biodynamic (BD). This study investigated differences in soil quality of 4 vineyards managed with each of these practices for at least 6 years. Twelve topsoil (0-15 cm) samples were collected in vineyard rows and inter-rows, during one sampling campaign, and analyzed for selected physical and chemical properties. These physical properties were texture, bulk density and penetration resistance, while the chemical properties included pH, electrical conductivity, and the contents of organic matter, nutrients, cations, and metals. Nearby forest soils were also sampled as a reference, since this was the prior land-use in the study sites. The obtained results demonstrated that conventional practices were associated with diminished soil quality, as indicated by lower contents of organic matter and nutrients, such as total nitrogen (TN) and phosphorus (TP), and exchangeable cations, as well as by a higher concentration of Cu and, in some samples, of Ni and Pb. Cu concentrations were also relatively high under NT, so that overall soil quality, particularly associated with fertility, was best under IP.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 149
Author(s):  
Karol Leluk ◽  
Stanisław Frąckowiak ◽  
Joanna Ludwiczak ◽  
Tomasz Rydzkowski ◽  
Vijay Kumar Thakur

Recently, biocomposites have emerged as materials of great interest to the scientists and industry around the globe. Among various polymers, polylactic acid (PLA) is a popular matrix material with high potential for advanced applications. Various particulate materials and nanoparticles have been used as the filler in PLA based matrix. One of the extensively studied filler is cellulose. However, cellulose fibres, due to their hydrophilic nature, are difficult to blend with a hydrophobic polymer matrix. This leads to agglomeration and creates voids, reducing the mechanical strength of the resulting composite. Moreover, the role of the various forms of pure cellulose and its particle shape factors has not been analyzed in most of the current literature. Therefore, in this work, materials of various shapes and shape factors were selected as fillers for the production of polymer composites using Polylactic acid as a matrix to fill this knowledge gap. In particular, pure cellulose fibres (three types with different elongation coefficient) and two mineral nanocomponents: precipitated calcium carbonate and montmorillonite were used. The composites were prepared by a melt blending process using two different levels of fillers: 5% and 30%. Then, the analysis of their thermomechanical and physico-chemical properties was carried out. The obtained results were presented graphically and discussed in terms of their shape and degree of filling.


2020 ◽  
Vol 6 (6(75)) ◽  
pp. 26-30
Author(s):  
S. A. Hunanyan ◽  
T. A. Jhangiryan ◽  
A. L. Mkrtchyan

Upon the investigations the contamination rate of soil and vegetation cover of the basin at river Debed and the impact of technogenesis on the agro-chemical properties of soil and yield capacity of agricultural crops has been identified. It has been found out that the content of heavy metal forms exceeds that of the control one by the following figures: Cu-in 47,5 and 31,8; Pb-32,9 and 36,1; Mo-35,9 and 23,8; Zn-9,5 and 19,1; Co-5,1 and 5,9; Cd25,5 and 23,1 times. The humus content has decreased in 1,2-2,7 times, that of the total and mobile nitrogen has decreased in 1,1-2,17 and 1,4-2,6 times, phosphorus content in 1,0-1,87 and 1,08-2,74 times, potassium content in 1,0-1,38 and 1,13-2,06 times. The environmental reaction has turned from the neutral and poorly alkaline into poorly acidic and acidic one. The amount of HM in the soil and plants has exceeded the MAC (maximum allowable concentration) and the yield capacity of agricultural crops has fallen down by 7,5-29 %.


2021 ◽  
pp. 62-67
Author(s):  
I.V. Tkachenko ◽  

Objective: The aim of our work was to study the potential ecotoxicological hazard of a new chemical from the class of tetramic and tetronic acid derivatives - the insecticide spiromesifen, taking into account its physico-chemical properties and impact on the environmental objects. Materials and methods: An assessment of the potential danger of spiromesifen use for ecosystems was carried out on the basis of the calculation of the ecotoxicological hazard (ecotox) by N.N. Melnikov’s method. The field studies were carried out in different agro-climatic zones of Ukraine. The treatment of vineyards and apple trees was carried out at the maximum consumption rates of spiromesifen. Results: According to the literary data and our research, it was found that in the soil-and-climatic conditions of Ukraine, the ecotoxicological risk, when using the new insecticide spiromesifen, is 10,000 times and 7,000 times low than the analogous characteristics of DDT. Ecotox abamectin is 154 times low than ecotox DDT. This makes preparations, based on these substances, more promising and competitive among other pesticides in agricultural use. We can conclude that spiromesifen does not pose a threat to terrestrial ecosystems and health of the population.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 791 ◽  
Author(s):  
Zubair Aslam ◽  
Safdar Bashir ◽  
Waseem Hassan ◽  
Korkmaz Bellitürk ◽  
Niaz Ahmad ◽  
...  

The present study was conducted to explore the role of different types of vermicomposts (VCs) prepared from different substrates to improve soil health (physical and chemical properties) and wheat plant growth under field conditions. Different combinations of vermicompost prepared from different substrates (cow dung, paper waste, and rice straw) and inorganic fertilizers were applied in soil using wheat as a test plant. The impact of three different VCs on physico-chemical characteristics and nutrient availability in soil was evaluated to examine their efficacy in combination with chemical fertilizers. Temporal trends in vermicomposting treatments at various stages showed significant improvement in physico-chemical attributes of the VCs substrates. All the plant physiological attributes showed significant response where N:P:K 100:50:50 kg ha−1 + 10 t ha−1 cow dung vermicompost was applied. In addition, post-harvest analysis of soil not only revealed that different combinations of the vermicomposting treatments improved the soil health by improving the physico-chemical attributes of the soil. Conclusively, application of cow dung vermicompost along with recommended NPK not only improved crop yield, soil health, reduced insect (aphid) infestation but also fortified grains with Zn and Fe.


Author(s):  
Gintaras JARAŠIŪNAS ◽  
Irena KINDERIENĖ

The objective of this study was to evaluate the impact of different land use systems on soil erosion rates, surface evolution processes and physico-chemical properties on a moraine hilly topography in Lithuania. The soil of the experimental site is Bathihypogleyi – Eutric Albeluvisols (abe–gld–w) whose texture is a sandy loam. After a 27-year use of different land conservation systems, three critical slope segments (slightly eroded, active erosion and accumulation) were formed. Soil physical properties of the soil texture and particle sizes distribution were examined. Chemical properties analysed for were soil ph, available phosphorus (P) and potassium (K), soil organic carbon (SOC) and total nitrogen (N). We estimated the variation in thickness of the soil Ap horizon and soil physico-chemical properties prone to a sustained erosion process. During the study period (2010–2012) water erosion occurred under the grain– grass and grass–grain crop rotations, at rates of 1.38 and 0.11 m3 ha–1 yr–1, respectively. Soil exhumed due to erosion from elevated positions accumulated in the slope bottom. As a result, topographic transfiguration of hills and changes in soil properties occurred. However, the accumulation segments of slopes had significantly higher silt/clay ratios and SOC content. In the active erosion segments a lighter soil texture and lower soil ph were recorded. Only long-term grassland completely stopped soil erosion effects; therefore geomorphologic change and degradation of hills was estimated there as minimal.


Sign in / Sign up

Export Citation Format

Share Document