Abstract 23: Microrna302-367 Sphingosine 1 Phosphate Receptor 1 Pathway Prevents Tumor Growth via Restricting Angiogenesis and Enhancing Vascular Stability

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Jinjiang Pi ◽  
Ting Tao ◽  
Tao Zhuang ◽  
Huimin Sun ◽  
Xiaoli Chen ◽  
...  

Angiogenic hypersprouting and leaky immature vessels of pathological angiogenesis are essential for tumor growth. MicroRNAs have unique therapeutic advantages by targeting multiple pathways of tumor-associated angiogenesis, but the function of individual miRNAs in angiogenesis and tumors has not yet been fully evaluated. Here, we show that miR302-367 elevation in endothelial cells reduces retina sprouting angiogenesis and promotes vascular stability in vivo, ex vivo and in vitro. Erk1/2 are identified as direct targets of miR302-367, and down-regulation of Erk1/2 upon miR302-367 elevation in endothelial cells increases the expression of Klf2 and in turn S1pr1 and its downstream target VE-cadherin, suppressing angiogenesis and improving vascular stability. Conversely, both pharmacological blockade and genetic deletion of S1pr1 in endothelial cells reverse the anti-angiogenic and vascular stabilizing effect of miR302-367 in mice. Pathological angiogenesis in tumors shares features of developmental angiogenesis, and endothelial specific elevation of miR302-367 reduces tumor growth by restricting sprout angiogenesis and decreasing vascular permeability via the same Erk1/2-Klf2-S1pr1 pathways. In conclusion, miR302-367 regulation of an Erk1/2-Klf2-S1pr1 pathway in the endothelium advances our understanding of angiogenesis, meanwhile also provides opportunities for therapeutic intervention of tumor growth.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1027
Author(s):  
Nishant Mohan ◽  
Xiao Luo ◽  
Yi Shen ◽  
Zachary Olson ◽  
Atul Agrawal ◽  
...  

Both EGFR and VEGFR2 frequently overexpress in TNBC and cooperate with each other in autocrine and paracrine manner to enhance tumor growth and angiogenesis. Therapeutic mAbs targeting EGFR (cetuximab) and VEGFR2 (ramucirumab) are approved by FDA for numerous cancer indications, but none of them are approved to treat breast cancers. TNBC cells secrete VEGF-A, which mediates angiogenesis on endothelial cells in a paracrine fashion, as well as promotes cancer cell growth in autocrine manner. To disrupt autocrine/paracrine loop in TNBC models in addition to mediating anti-EGFR tumor growth signaling and anti-VEGFR2 angiogenic pathway, we generated a BsAb co-targeting EGFR and VEGFR2 (designated as anti-EGFR/VEGFR2 BsAb), using publicly available sequences in which cetuximab IgG backbone is connected to the single chain variable fragment (scFv) of ramucirumab via a glycine linker. Physiochemical characterization data shows that anti-EGFR/VEGFR2 BsAb binds to both EGFR and VEGFR2 in a similar binding affinity comparable to parental antibodies. Anti-EGFR/VEGFR2 BsAb demonstrates in vitro and in vivo anti-tumor activity in TNBC models. Mechanistically, anti-EGFR/VEGFR2 BsAb not only directly inhibits both EGFR and VEGFR2 in TNBC cells but also disrupts autocrine mechanism in TNBC xenograft mouse model. Furthermore, anti-EGFR/VEGFR2 BsAb inhibits ligand-induced activation of VEGFR2 and blocks paracrine pathway mediated by VEGF secreted from TNBC cells in endothelial cells. Collectively, our novel findings demonstrate that anti-EGFR/VEGFR2 BsAb inhibits tumor growth via multiple mechanisms of action and warrants further investigation as a targeted antibody therapeutic for the treatment of TNBC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paul D. Bates ◽  
Alexander L. Rakhmilevich ◽  
Monica M. Cho ◽  
Myriam N. Bouchlaka ◽  
Seema L. Rao ◽  
...  

Management for high-risk neuroblastoma (NBL) has included autologous hematopoietic stem cell transplant (HSCT) and anti-GD2 immunotherapy, but survival remains around 50%. The aim of this study was to determine if allogeneic HSCT could serve as a platform for inducing a graft-versus-tumor (GVT) effect against NBL with combination immunocytokine and NK cells in a murine model. Lethally irradiated C57BL/6 (B6) x A/J recipients were transplanted with B6 bone marrow on Day +0. On day +10, allogeneic HSCT recipients were challenged with NXS2, a GD2+ NBL. On days +14-16, mice were treated with the anti-GD2 immunocytokine hu14.18-IL2. In select groups, hu14.18-IL2 was combined with infusions of B6 NK cells activated with IL-15/IL-15Rα and CD137L ex vivo. Allogeneic HSCT alone was insufficient to control NXS2 tumor growth, but the addition of hu14.18-IL2 controlled tumor growth and improved survival. Adoptive transfer of ex vivo CD137L/IL-15/IL-15Rα activated NK cells with or without hu14.18-IL2 exacerbated lethality. CD137L/IL-15/IL-15Rα activated NK cells showed enhanced cytotoxicity and produced high levels of TNF-α in vitro, but induced cytokine release syndrome (CRS) in vivo. Infusing Perforin-/- CD137L/IL-15/IL-15Rα activated NK cells had no impact on GVT, whereas TNF-α-/- CD137L/IL-15/IL-15Rα activated NK cells improved GVT by decreasing peripheral effector cell subsets while preserving tumor-infiltrating lymphocytes. Depletion of Ly49H+ NK cells also improved GVT. Using allogeneic HSCT for NBL is a viable platform for immunocytokines and ex vivo activated NK cell infusions, but must be balanced with induction of CRS. Regulation of TNFα or activating NK subsets may be needed to improve GVT effects.


2013 ◽  
Vol 305 (11) ◽  
pp. L844-L855 ◽  
Author(s):  
Ming-Yuan Jian ◽  
Mikhail F. Alexeyev ◽  
Paul E. Wolkowicz ◽  
Jaroslaw W. Zmijewski ◽  
Judy R. Creighton

Acute lung injury secondary to sepsis is a leading cause of mortality in sepsis-related death. Present therapies are not effective in reversing endothelial cell dysfunction, which plays a key role in increased vascular permeability and compromised lung function. AMP-activated protein kinase (AMPK) is a molecular sensor important for detection and mediation of cellular adaptations to vascular disruptive stimuli. In this study, we sought to determine the role of AMPK in resolving increased endothelial permeability in the sepsis-injured lung. AMPK function was determined in vivo using a rat model of endotoxin-induced lung injury, ex vivo using the isolated lung, and in vitro using cultured rat pulmonary microvascular endothelial cells (PMVECs). AMPK stimulation using N1-(α-d-ribofuranosyl)-5-aminoimidizole-4-carboxamide or metformin decreased the LPS-induced increase in permeability, as determined by filtration coefficient ( Kf) measurements, and resolved edema as indicated by decreased wet-to-dry ratios. The role of AMPK in the endothelial response to LPS was determined by shRNA designed to decrease expression of the AMPK-α1 isoform in capillary endothelial cells. Permeability, wounding, and barrier resistance assays using PMVECs identified AMPK-α1 as the molecule responsible for the beneficial effects of AMPK in the lung. Our findings provide novel evidence for AMPK-α1 as a vascular repair mechanism important in the pulmonary response to sepsis and identify a role for metformin treatment in the management of capillary injury.


2019 ◽  
Vol 22 (1) ◽  
pp. 46-57 ◽  
Author(s):  
Yifu Song ◽  
Yang Jiang ◽  
Dongxia Tao ◽  
Zixun Wang ◽  
Run Wang ◽  
...  

Abstract Background Deregulation of the nuclear factor of activated T cell (NFAT) pathway has been reported in several human cancers. Particularly, NFAT2 is involved in the malignant transformation of tumor cells and is identified as an oncogene. However, the role of NFAT2 in glioblastoma (GBM) is largely unknown. Methods The expression and prognostic value of NFAT2 were examined in the databases of the Repository of Molecular Brain Neoplasia Data and The Cancer Genome Atlas (TCGA) and clinical samples. The functional effects of silencing or overexpression of NFAT2 were evaluated in glioma stem cell (GSC) viability, invasion, and self-renewal in vitro and in tumorigenicity in vivo. The downstream target of NFAT2 was investigated. Results High NFAT2 expression was significantly associated with mesenchymal (MES) subtype and recurrent GBM and predicted poor survival. NFAT2 silencing inhibited the invasion and clonogenicity of MES GSC-enriched spheres in vitro and in vivo. NFAT2 overexpression promoted tumor growth and MES differentiation of GSCs. A TCGA database search showed that histone deacetylase 1 (HDAC1) expression was significantly correlated with that of NFAT2. NFAT2 regulates the transcriptional activity of HDAC1. Rescue of HDAC1 in NFAT2-knockdown GSCs partially restored tumor growth and MES phenotype. Loss of NFAT2 and HDAC1 expression resulted in hyperacetylation of nuclear factor-kappaB (NF-κB), which inhibits NF-κB–dependent transcriptional activity. Conclusion Our findings suggest that the NFAT2-HDAC1 pathway might play an important role in the maintenance of the malignant phenotype and promote MES transition in GSCs, which provide potential molecular targets for the treatment of GBMs.


2019 ◽  
Vol 317 (4) ◽  
pp. H765-H776 ◽  
Author(s):  
Takerra K. Johnson ◽  
Lina Zhao ◽  
Dihan Zhu ◽  
Yang Wang ◽  
Yan Xiao ◽  
...  

Induced vascular progenitor cells (iVPCs) were created as an ideal cell type for regenerative medicine and have been reported to positively promote collateral blood flow and improve cardiac function in a rat model of myocardial ischemia. Exosomes have emerged as a novel biomedicine that mimics the function of the donor cells. We investigated the angiogenic activity of exosomes from iPVCs (iVPC-Exo) as a cell-free therapeutic approach for ischemia. Exosomes from iVPCs and rat aortic endothelial cells (RAECs) were isolated using a combination of ultrafiltration and size-exclusion chromatography. Nanoparticle tracking analysis revealed that exosome isolates fell within the exosomal diameter (<150 nm). These exosomes contained known markers Alix and TSG101, and their morphology was validated using transmission electron microscopy. When compared with RAECs, iVPCs significantly increased the secretion of exosomes. Cardiac microvascular endothelial cells and aortic ring explants were pretreated with RAEC-Exo or iVPC-Exo, and basal medium was used as a control. iVPC-Exo exerted an in vitro angiogenic effect on the proliferation, tube formation, and migration of endothelial cells and stimulated microvessel sprouting in an ex vivo aortic ring assay. Additionally, iVPC-Exo increased blood perfusion in a hindlimb ischemia model. Proangiogenic proteins (pentraxin-3 and insulin-like growth factor-binding protein-3) and microRNAs (-143-3p, -291b, and -20b-5p) were found to be enriched in iVPC-Exo, which may mediate iVPC-Exo induced vascular growth. Our findings demonstrate that treatment with iVPC-Exo promotes angiogenesis in vitro, ex vivo, and in vivo. Collectively, these findings indicate a novel cell-free approach for therapeutic angiogenesis. NEW & NOTEWORTHY The results of this work demonstrate exosomes as a novel physiological mechanism by which induced vascular progenitor cells exert their angiogenic effect. Moreover, angiogenic cargo of proteins and microRNAs may define the biological contributors in activating endothelial cells to form a new capillary plexus for ischemic vascular diseases. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/angiogenic-exosomes-from-vascular-progenitor-cells/ .


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13093-13093 ◽  
Author(s):  
S. L. Smiley ◽  
D. O. Henry ◽  
M. K. Wong

13093 Background: Clinical studies show that LMWHs improve survival in cancer patients. There is compelling and mounting evidence that non-anticoagulation factors are at play, and that these may be contributing in a major way to improved patient outcome. Methods and Results: Dalteparin, enoxaparin, and tinzaparin were tested for their in vivo ability to inhibit tumor lines engineered for aggressive angiogenesis-driven growth. Therapeutic daily doses of drug administered the day following tumor inoculation resulted in significant angiogenesis and tumor inhibition. We previously showed that LMWHs inhibit fibroblast growth factor (FGF) -induced mitogenesis of Tumor Derived Endothelial Cells (TDECs) in a time and concentration dependent manner in vitro. We now show that this endothelial inhibition occurs through LMWHs-mediated reduction of phosphorylation and down stream signaling through ERK. The potency of LMWH was significantly reduced when TDECs were pretreated with heparinase- suggesting that the molecular target for LMWH may be the cell surface, low affinity FGF receptor system. Both our in vivo and in vitro studies demonstrate that angiogenesis and tumor inhibition are greatest for dalteparin > tinzaparin > enoxaparin. Clues to the heparin-TDECs interaction comes from tracking the real-time movement of FGF using a highly fluorescent nanocrystal bead decorated on its surface with FGF. High resolution video-microscopy shows FGF binding onto TDEC surfaces, but once heparin enters the environment, FGF detaches from the TDECs and migrates to the heparin. This ultimately results in significant TDEC growth inhibition as compared to controls. Conclusion: LMWH treatment at pharmacologic doses significantly blunts tumor growth and angiogenesis. This inhibition resides in part via heparin’s ability to sequester FGF from the low affinity receptor system on tumor endothelial cells. No significant financial relationships to disclose.


2015 ◽  
Vol 112 (46) ◽  
pp. 14284-14289 ◽  
Author(s):  
Xavier Cullere ◽  
Eva Plovie ◽  
Paul M. Bennett ◽  
Calum A. MacRae ◽  
Tanya N. Mayadas

Three genes, CCM1, CCM2, and CCM3, interact genetically and biochemically and are mutated in cerebral cavernous malformations (CCM). A recently described member of this CCM family of proteins, CCM2-like (CCM2L), has high homology to CCM2. Here we show that its relative expression in different tissues differs from that of CCM2 and, unlike CCM2, the expression of CCM2L in endothelial cells is regulated by density, flow, and statins. In vitro, both CCM2L and CCM2 bind MEKK3 in a complex with CCM1. Both CCM2L and CCM2 interfere with MEKK3 activation and its ability to phosphorylate MEK5, a downstream target. The in vivo relevance of this regulation was investigated in zebrafish. A knockdown of ccm2l and ccm2 in zebrafish leads to a more severe “big heart” and circulation defects compared with loss of function of ccm2 alone, and also leads to substantial body axis abnormalities. Silencing of mekk3 rescues the big heart and body axis phenotype, suggesting cross-talk between the CCM proteins and MEKK3 in vivo. In endothelial cells, CCM2 deletion leads to activation of ERK5 and a transcriptional program that are downstream of MEKK3. These findings suggest that CCM2L and CCM2 cooperate to regulate the activity of MEKK3.


2021 ◽  
Vol 11 ◽  
Author(s):  
Camille Fuselier ◽  
Sandrine Quemener ◽  
Eleonore Dufay ◽  
Camille Bour ◽  
Camille Boulagnon-Rombi ◽  
...  

Melanoma is the most aggressive form of skin cancer and the most rapidly expanding cancer in terms of worldwide incidence. If primary cutaneous melanoma is mostly treated with a curative wide local excision, malignant melanoma has a poor prognosis and needs other therapeutic approaches. Angiogenesis is a normal physiological process essential in growth and development, but it also plays a crucial role in crossing from benign to advanced state in cancer. In melanoma progression, angiogenesis is widely involved during the vertical growth phase. Currently, no anti-angiogenic agents are efficient on their own, and combination of treatments will probably be the key to success. In the past, phenacetin was used as an analgesic to relieve pain, causing side effects at large dose and tumor-inducing in humans and animals. By contrast, Phenacetinum low-dilution is often used in skin febrile exanthema, patches profusely scattered on limbs, headache, or flushed face without side effects. Herein are described the in vitro, in vivo, and ex vivo anti-angiogenic and anti-tumoral potentials of Phenacetinum low-dilution in a B16F1 tumor model and endothelial cells. We demonstrate that low-diluted Phenacetinum inhibits in vivo tumor growth and tumor vascularization and thus increases the survival time of B16F1 melanoma induced-C57BL/6 mice. Moreover, Phenacetinum modulates the lung metastasis in a B16F10 induced model. Ex vivo and in vitro, we evidence that low-diluted Phenacetinum inhibits the migration and the recruitment of endothelial cells and leads to an imbalance in the pro-tumoral macrophages and to a structural malformation of the vascular network. All together these results demonstrate highly hopeful anti-tumoral, anti-metastatic, and anti-angiogenic effects of Phenacetinum low-dilution on melanoma. Continued studies are needed to preclinically validate Phenacetinum low-dilution as a complementary or therapeutic strategy for melanoma treatment.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4882-4882
Author(s):  
Alison Domingues ◽  
Kamila Bujko ◽  
Magdalena Kucia ◽  
Janina Ratajczak ◽  
Mariusz Z Ratajczak

Background . There is an ongoing search for multipotent stem cells from umbilical cord blood (UCB) with trans-germ layer differentiation potential that can be employed in repairing damaged organs and also expanded into transplantable hematopoietic stem cells (HSCs) and endothelial progenitor cells (EPCs). The existence of such cells in postnatal life could also revive the concept of hemangioblasts or hemangioblast-like cells in adult hematopoietic organs. Our group was the first to isolate a population of small CD34+CD133+lin-CD45- early-development stem cells from human hematopoietic tissues, including UCB. Based on the validated expression of early-development markers, these cells were named "very small embryonic-like stem cells" (VSELs, Circulation Res 2019; 124:208-210). Currently, more than 25 independent groups worldwide who have carefully followed the multicolor-staining cell-sorting strategy described by us (Current Protocols in Cytometry 2010, 9.29.1-9.29.15) have successfully isolated these cells and demonstrated their in vivo contribution to all three germ layer lineages. Thus, VSELs could be very useful in regenerative medicine in the field of angiogenesis, and UCB is an attractive source, with easy accessibility and tolerance to allogenic grafts. However, the low number of these cells in UCB and their quiescence are limiting factors. Therefore, in vitro differentiation of VSELs into endothelial progenitor cells (EPCs) would allow improvement in the ability to expand endothelial cells and could represent a clinically relevant alternative to embryonic stem cells (ESCs) and induced pluripotent stem cells (iPS) for cell therapy without ethical problems and undesirable side effects. Hypothesis. We hypothesized that UCB-purified, very small, early-developmentCD34+lin-CD45-stem cells can be ex vivo expanded into functional EPCs. Materials and Methods. VSELs highly purified by FACS were expanded into EPCs in pro-angiogenic medium supplemented with mesodermic differentiation factors and then endothelial differentiation factors in the presence of nicotinamide and UM171. In parallel, we expanded EPCs from MNCs isolated from the same UCB units by employing a classical protocol (Methods in Enzymology 2008, 445:303-29). The EPC nature of the expanded VSEL-derived cells was confirmed by the expression of typical EPC markers as well as by in vitro angiogenic assays. Results. Our differentiation cocktail allowed us to differentiate and expand VSELs into EPCs. In our expansion medium (Figure 1), the very small, round VSELs smaller than 6 mm in diameter proliferated and differentaited over time into larger and extended cells with a cobblestone morphology similar to the EPC control cells, and we confirmed their endothelial characteristics by cytometry analysis. Like EPCs, VSEL-derived EPCs were positive for CD31, CD144, KDR, and CD105 and negative for mesenchymal surface markers, such as CD90. They also performed similarly to EPCs in classical vasculogenic tests, including adhesion, proliferation, migration, and tubulogenesis assays. Conclusions. This work shows, for the first time, efficient VSEL differentiation into functional endothelial cells with vasculogenic properties without the help of co-culture over feeder-layers or viral vectors in medium supplemented with nicotinamide and UM171. These findings allow us to propose these cells as an interesting cell therapy product. These results also reopen the question of the existence of hemangioblast-like cells in postnatal tissues. We are currently testing these cells in vivo in model of hind limb ischemia. Figure 1 Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document