scholarly journals Chemokines as Therapeutic Targets in Cardiovascular Disease

2019 ◽  
Vol 39 (4) ◽  
pp. 583-592 ◽  
Author(s):  
Heidi Noels ◽  
Christian Weber ◽  
Rory R. Koenen

With the incidence and impact of atherosclerotic cardiovascular disease and its clinical manifestations still rising, therapeutic options that target the causal mechanisms of this disorder are highly desired. Since the CANTOS trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) has demonstrated that lowering inflammation can be beneficial, focusing on mechanisms underlying inflammation, for example, leukocyte recruitment, is feasible. Being key orchestrators of leukocyte trafficking, chemokines have not lost their attractiveness as therapeutic targets, despite the difficult road to drug approval thus far. Still, innovative therapeutic approaches are being developed, paving the road towards the first chemokine-based therapeutic against inflammation. In this overview, recent developments for chemokines and for the chemokine-like factor MIF (macrophage migration inhibitory factor) will be discussed.

2021 ◽  
Author(s):  
Florentina Porsch ◽  
Ziad Mallat ◽  
Christoph J Binder

Abstract Immune mechanisms are critically involved in the pathogenesis of atherosclerosis and its clinical manifestations. Associations of specific antibody levels and defined B cell subsets with cardiovascular disease activity in humans as well as mounting evidence from preclinical models demonstrate a role of B cells and humoral immunity in atherosclerotic cardiovascular disease. These include all aspects of B cell immunity, the generation of antigen-specific antibodies, antigen presentation and co-stimulation of T cells, as well as production of cytokines. Through their impact on adaptive and innate immune responses and the regulation of many other immune cells, B cells mediate both protective and detrimental effects in cardiovascular disease. Several antigens derived from (oxidised) lipoproteins, the vascular wall and classical autoantigens have been identified. The unique antibody responses they trigger and their relationship with atherosclerotic cardiovascular disease are reviewed. In particular, we focus on the different effector functions of specific IgM, IgG, and IgE antibodies and the cellular responses they trigger and highlight potential strategies to target B cell functions for therapy.


2019 ◽  
Vol 24 (39) ◽  
pp. 4681-4684 ◽  
Author(s):  
Virna M. Martín Giménez ◽  
Alejandra B. Camargo ◽  
Diego Kassuha ◽  
Walter Manucha

Atherosclerosis provokes a continuous worsening of affected vessels causing a blood flow diminution with several complications and with clinical manifestations that generally appear in advanced phases of the illness. Hence, the conventional therapies are not enough because the atherosclerotic injuries are often irrevocable. For this reason, emerges the necessity to implement smart ways of drug supply and develop new therapeutic targets that decrease the advance atherosclerotic lesion. It results due to particular interest to use new tools for prevention, diagnosis, and treatment of this cardiovascular disease, thus concentrating our attention to accomplish better management on the immune system. Finally, this mini-review highlights the most recent knowledge about nanotechnology as a robust, novel and promissory therapeutic option applied to atherosclerotic pathology, nevertheless, we also alert for possible issues associated with their use.


Author(s):  
Eva Hurt-Camejo ◽  
Germán Camejo

Experimental and clinical data indicates that the initiation and progress of atherosclerosis, and its clinical manifestations, are caused first by circulating apoB-100 lipoproteins that enter and are retained in the arterial intima. Extracellular sulfated proteoglycans (PGs) of the intima are the retention agents. The PGs also initiate physical and biochemical lipoprotein degradation with the production of bioactive, lipid products that trigger an inflammatory response that leads to atherosclerosis. There are many simple methods for measuring abnormalities of circulating lipoproteins and their relation to atherosclerotic cardiovascular disease (ACVD). However, limited research has been aimed to evaluate procedures that could report quantitatively about the contribution of the apo-100 lipoprotein-arterial intima PGs interaction to clinical manifestation of ACVD. In the present review we will discuss observations indicating that simple ex vivo evaluation of the affinity of apoB-100 lipoproteins for arterial PGs and glycosaminoglycans (GAGs) can give indication of its association with clinical manifestations of atherosclerosis. In addition, we will discuss molecular and cellular aspect of the apoB-100 lipoproteins association with arterial PGs that are related to atherogenesis and that support the experimental framework behind the current “Response-to-Retention” hypothesis of atherosclerosis


2021 ◽  
Vol 8 ◽  
Author(s):  
Tamar Vakhtangadze ◽  
Rajeeka Singh Tak ◽  
Utkarsh Singh ◽  
Mirza S. Baig ◽  
Evgeny Bezsonov

Cardiovascular diseases (CVDs) are one of the main reasons of death and morbidity in the world. Both women and men have high rates of cardiovascular morbidity and mortality, although gender-related differences in mortality and morbidity rates are observed in different age groups of the population. In the large cohort of cardiovascular disease, ischemic heart disease (IHD), heart failure (HF), systemic hypertension, and valvular heart disease are particularly common in the population. CVDs caused by atherosclerosis are in the first place in terms of frequency, that is why society is particularly interested in this problem. The development and course of atherosclerotic processes associated with lipid and other metabolic changes are characterized by a long latent period, the clinical manifestation is often an acute vascular catastrophe, which can lead to human disability and death. Differences associated with sex are observed in the clinical course and manifestations, which raises the suspicion that gender influences processes related to atherosclerosis. Atherosclerotic cardiovascular disease (ACD) includes two main most dangerous clinical manifestations: IHD and cerebrovascular disease (mainly ischemic stroke). Other less common clinical manifestations of atherosclerosis include aortic atherosclerosis and peripheral vascular disease. Gender-related differences were also identified concerning these diseases. The present review discusses the effects of gender and age on atherosclerotic processes, disease development, and clinical manifestations. The metabolic basis for the development of atherosclerosis appears to be related to sex hormones. Thus this issue is interesting and useful for doctors of different specialties.


2019 ◽  
Vol 8 (12) ◽  
pp. 2199 ◽  
Author(s):  
Emma L. Solly ◽  
Catherine G. Dimasi ◽  
Christina A. Bursill ◽  
Peter J. Psaltis ◽  
Joanne T. M. Tan

Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Atherosclerosis develops over several decades and is mediated by a complex interplay of cellular mechanisms that drive a chronic inflammatory milieu and cell-to-cell interactions between endothelial cells, smooth muscle cells and macrophages that promote plaque development and progression. While there has been significant therapeutic advancement, there remains a gap where novel therapeutic approaches can complement current therapies to provide a holistic approach for treating atherosclerosis to orchestrate the regulation of complex signalling networks across multiple cell types and different stages of disease progression. MicroRNAs (miRNAs) are emerging as important post-transcriptional regulators of a suite of molecular signalling pathways and pathophysiological cellular effects. Furthermore, circulating miRNAs have emerged as a new class of disease biomarkers to better inform clinical diagnosis and provide new avenues for personalised therapies. This review focusses on recent insights into the potential role of miRNAs both as therapeutic targets in the regulation of the most influential processes that govern atherosclerosis and as clinical biomarkers that may be reflective of disease severity, highlighting the potential theranostic (therapeutic and diagnostic) properties of miRNAs in the management of cardiovascular disease.


2019 ◽  
Vol 26 (8) ◽  
pp. 1311-1327 ◽  
Author(s):  
Pala Rajasekharreddy ◽  
Chao Huang ◽  
Siddhardha Busi ◽  
Jobina Rajkumari ◽  
Ming-Hong Tai ◽  
...  

With the emergence of nanotechnology, new methods have been developed for engineering various nanoparticles for biomedical applications. Nanotheranostics is a burgeoning research field with tremendous prospects for the improvement of diagnosis and treatment of various cancers. However, the development of biocompatible and efficient drug/gene delivery theranostic systems still remains a challenge. Green synthetic approach of nanoparticles with low capital and operating expenses, reduced environmental pollution and better biocompatibility and stability is a latest and novel field, which is advantageous over chemical or physical nanoparticle synthesis methods. In this article, we summarize the recent research progresses related to green synthesized nanoparticles for cancer theranostic applications, and we also conclude with a look at the current challenges and insight into the future directions based on recent developments in these areas.


2018 ◽  
Vol 25 (13) ◽  
pp. 1480-1500 ◽  
Author(s):  
Sho-ichi Yamagishi ◽  
Takanori Matsui

Pigment epithelium-derived factor (PEDF) is a glycoprotein that belongs to the superfamily of serine protease inhibitors, serpins. It was first identified as a neuronal differentiating factor secreted by human retinal pigment epithelial cells, and then found to be the most potent inhibitor of pathological angiogenesis in mammalian eyes. Recently, PEDF has been shown not only to suppress oxidative stress and inflammatory reactions in vascular wall cells, T cells and macrophages, and adipocytes, but also to exert antithrombotic and anti-fibrotic properties, thereby protecting against the development and progression of various cardiometabolic diseases and related complications. Furthermore, accumulating evidence has suggested that circulating PEDF levels may be a biomarker of severity and prognosis of these devastating disorders. Number of subjects with visceral obesity and insulin resistance is increasing, and the metabolic syndrome and its related complications, such as diabetes, nonalcoholic fatty liver disease/non-alcoholic steatohepatits, and atherosclerotic cardiovascular disease are a growing health challenge. Therefore, in this study, we review the pathophysiological role of PEDF in obesity and metabolic disorders, cardiovascular disease, diabetic eye and kidney complications, liver diseases, and reproductive system disorders, and discuss the potential clinical utility of modulating the expression and actions of PEDF for preventing these cardiometabolic disorders. We also refer to the clinical value of PEDF as a biomarker in cardiometabolic complications.


Sign in / Sign up

Export Citation Format

Share Document