Abstract 14810: Sam68 Promotes Nf-kb Signaling and Inflammation and Impedes the Recovery of Arterial Injury

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Shuling Han ◽  
Junlan Zhou ◽  
Gangjian Qin

Background: The role of Src-associated in mitosis 68 kDa (Sam68) protein in cardiovascular biology has not been studied. A recent report suggests that Sam68 suppresses TNF-α-mediated NF-kB activation. Since NF-kB plays a critical role in vascular inflammation and injury via generation of inflammatory cytokines and recruitment of inflammatory cells, we sought to dissect the molecular mechanism by which Sam68 regulates NF-kB signaling and its functional significance during vascular injury. Methods & Results: The endothelial denudation injury was induced in the carotid arteries of Sam68-null (Sam68 -/- ) and WT mice. Sam68 -/- mice displayed an accelerated re-endothelialization ( P <0.05 at day 5 post-injury) and attenuated neointima formation (by 2.2 folds, P <0.05, at day 14), which was associated with a reduced number of macrophages and lowered expression of pro-inflammatory cytokines (i.e., TNF-alpha, MCP-1 and IL-6) in the injured vessels. In cultured Raw264.7 macrophages, knockdown of Sam68 resulted in a significant reduction in the TNF-α-induced expression of TNF-α, MCP-1, and IL-6 and in the level of nuclear phospho-p65, which indicates attenuated NF-kB activation. These results were confirmed in peritoneal macrophages and macrophages differentiated from bone-marrow mononuclear cells of Sam68 -/- and WT mice. To identify molecular mechanisms, Raw264.7 cells were treated with TNF-α and Vehicle, followed by Sam68 co-immunoprecipitation and mass-spectrometric identification of the Sam68-interacting proteins. We found that TNF-α treatment results in altered interactions of Sam68 with 22 cytosolic, cytoskeletal, and nuclear proteins. Further experiments are under way to validate their involvement in the NF-kB signaling. Conclusions: Our results for the first time suggest that Sam68 promotes pro-inflammatory response in injured arteries and impedes recovery, and this effect may be partially attributable to the exaggerated NF-kB activity.

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Shuling Han ◽  
Junlan Zhou ◽  
Baron T Arnone ◽  
Dauren Biyashev ◽  
Chan Boriboun ◽  
...  

Background: The role of Src-associated in mitosis 68 kDa (Sam68) in cardiovascular biology has not been studied. A recent report suggests that Sam68 suppresses TNF-α-induced NF-κB activation. Since NF-κB plays a critical role in vascular inflammation and injury via generation of inflammatory cytokines and recruitment of inflammatory cells, we sought to dissect the mechanism by which Sam68 regulates NF-κB signaling and its functional significance during vascular injury. Methods & Results: The endothelial denudation injury was induced in the carotid arteries of Sam68-/- and WT mice. Sam68-/- mice displayed an accelerated re-endothelialization and attenuated neointima hyperplasia, which was associated with a reduced number of macrophages and lowered expression of pro-inflammatory cytokines (i.e., TNF-α, IL-1β and IL-6) in the injured vessels. Importantly, the ameliorated vascular remodeling was recapitulated in WT mice after transplantation of bone marrow (BM) from Sam68-/- mice, suggesting beneficial role was attributed largely to BM-derived inflammatory cells. In cultured Raw264.7 macrophages, knockdown of Sam68 resulted in a significant reduction in the TNF-α-induced expression of TNF-α, IL-1β, and IL-6 and in the level of nuclear phospho-p65, indicating an attenuated NF-κB activation. These results were confirmed in peritoneal macrophages and macrophages differentiated from BM mononuclear cells of Sam68-/- and WT mice. To identify molecular mechanisms, Raw264.7 cells were treated with TNF-α and Vehicle, followed by Sam68 co-immunoprecipitation and mass-spec identification of Sam68-interacting proteins. Specifically, TNF-α treatment results in altered interactions of Sam68 with Filamin A (FLNA), a cytoskeleton protein known to be involved in NF-κB activation. Loss- and gain-of-function of Sam68 and FLNA suggest their mutual dependence in NF-κB activation and pro-inflammatory cytokine expression, and Sam68 is required for TRAF2-FLNA interaction. Conclusions: Our results for the first time suggest that Sam68 promotes pro-inflammatory response in injured arteries and impedes recovery, and this effect is attributed, in part, to the exaggerated NF-κB activity via Sam68-FLNA interaction and consequent TRAF2 stabilization.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Shuling Han ◽  
Junlan Zhou ◽  
Gangjian Qin

Background: The role of Src-associated-in-mitosis-of-68-kDa (Sam68) protein in vascular biology has not been studied. A recent report suggests that Sam68 suppresses TNF-a-mediated NF-kB activation in embryonic fibroblasts. Since NF-kB plays a critical role in vascular inflammation and injury, we sought to dissect the molecular mechanism by which Sam68 regulates NF-kB signaling and its functional significance in vascular injury. Methods & Results: The endothelial denudation injury was induced in the carotid arteries of Sam68 -/- mice and WT littermates. Sam68 -/- mice displayed a significantly accelerated re-endothelialization and attenuated neointimal hyperplasia, which was associated with reduced macrophage infiltration and lowered expression of pro-inflammatory cytokines (i.e., TNF-a, MCP-1, IL-1, and IL-6) in the injured vessels. The improved carotid recovery in Sam68 -/- mice was recapitulated in WT mice that had received Sam68 -/- bone-marrow (BM) transplantation, suggesting that Sam68 impedes vascular recovery primarily by its function in BM cells, likely pro-inflammatory cells. In cultured Raw264.7 macrophages, knockdown of Sam68 resulted in a significant reduction in the TNF-a-induced expression of pro-inflammatory cytokines and in the level of P-IKKαβ, P-IkBa (in cytosol) and P-P65 (in nucleus), indicating attenuated NF-kB activation. These results were confirmed in peritoneal and BM-derived macrophages from Sam68 -/- and WT mice. Furthermore, Sam68 co-immunoprecipitation and mass-spectrometric analyses identified cytoskeleton protein Filamin A (FLNA) as a novel Sam68-interacting protein in response to TNF-a stimulation. Reverse co-immunoprecipitation and truncational mutagenesis confirmed that Sam68-FLNA interactions require the N-terminus of Sam68. Finally, analyses in Raw264.7 cells with FLNA knockdown revealed that the effects of Sam68 on TNF-a[[Unsupported Character - Codename &shy;]]-induced NF-kB signaling and pro-inflammatory cytokine expression were dependent on FLNA. Conclusions: Our data suggest that Sam68 promotes pro-inflammatory response in injured arteries and impedes recovery, and this effect may be attributable, at least partially, to the exaggerated NF-kB activity in macrophages.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Alexandre H. Lopes ◽  
Rangel L. Silva ◽  
Miriam D. Fonseca ◽  
Francisco I. Gomes ◽  
Alexandre G. Maganin ◽  
...  

Abstract Background Low molecular weight carrageenan (Cg) is a seaweed-derived sulfated polysaccharide widely used as inflammatory stimulus in preclinical studies. However, the molecular mechanisms of Cg-induced inflammation are not fully elucidated. The present study aimed to investigate the molecular basis involved in Cg-induced macrophages activation and cytokines production. Methods Primary culture of mouse peritoneal macrophages were stimulated with Kappa Cg. The supernatant and cell lysate were used for ELISA, western blotting, immunofluorescence. Cg-induced mouse colitis was also developed. Results Here we show that Cg activates peritoneal macrophages to produce pro-inflammatory cytokines such as TNF and IL-1β. While Cg-induced TNF production/secretion depends on TLR4/MyD88 signaling, the production of pro-IL-1β relies on TLR4/TRIF/SYK/reactive oxygen species (ROS) signaling pathway. The maturation of pro-IL1β into IL-1β is dependent on canonical NLRP3 inflammasome activation via Pannexin-1/P2X7/K+ efflux signaling. In vivo, Cg-induced colitis was reduced in mice in the absence of NLRP3 inflammasome components. Conclusions In conclusion, we unravel a critical role of the NLRP3 inflammasome in Cg-induced pro-inflammatory cytokines production and colitis, which is an important discovery on the pro-inflammatory properties of this sulfated polysaccharide for pre-clinical studies. Graphical Abstract Carrageenan (Cg) is one the most used flogistic stimulus in preclinical studies. Nevertheless, the molecular basis of Cg-induced inflammation is not totally elucidated. Herein, Lopes et al. unraveled the molecular basis for Cg-induced macrophages production of biological active IL-1β. The Cg-stimulated macrophages produces pro-IL-1β depends on TLR4/TRIF/Syk/ROS, whereas its processing into mature IL-1β is dependent on the canonical NLRP3 inflammasome.


Author(s):  
Vandana R. Thakur ◽  
Anita A. Mehta

Abstract Objectives Currently, there are several animal models for vasculitis. Ovalbumin and lipopolysaccharide (OVA, LPS) are well established for causing inflammation and used as an adjunct in the vasculitis induction. However, to date, none has established the effect of OVA and LPS in disease induction. Therefore, in the present study, an attempt has been made to develop a new animal model for vasculitis using OVA/LPS in rats. Methods A total of 42 Wistar rats were divided randomly into seven groups (n=6/group), normal control, and three different doses (0.5, 1, and 5 mg/kg) of OVA and LPS treated groups. Half of the rats in each group received only intraperitoneal sensitization, while the remaining half rats were additionally subjected to a one-week intranasal challenge. Results Results showed that both OVA/LPS in their respective groups have significantly increased circulating inflammatory cells, C-reactive protein (CRP), Inflammatory cytokines (IL-1β, IL-6, TNF-α), Kidney damage markers (BUN, Creatinine), and liver function enzymes (AST, ALT) in a dose-dependent manner. Conclusions OVA/LPS induced vascular inflammation in a dose-dependent manner. However, the higher (5 mg/kg) dose of ovalbumin and lipopolysaccharide has contributed to severe vascular inflammation through increasing inflammatory cytokines. These findings suggest that OVA/LPS may contribute as a possible model for vasculitis in rats.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2794 ◽  
Author(s):  
Cao ◽  
Chen ◽  
Ren ◽  
Zhang ◽  
Tan ◽  
...  

Punicalagin, a hydrolysable tannin of pomegranate juice, exhibits multiple biological effects, including inhibiting production of pro-inflammatory cytokines in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In this study, we investigated the anti-inflammatory potential of punicalagin in lipopolysaccharide (LPS) induced RAW264.7 macrophages and uncovered the underlying mechanisms. Punicalagin significantly attenuated, in a concentration-dependent manner, LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 release at the highest concentration. We found that punicalagin inhibited NF-κB and MAPK activation in LPS-induced RAW264.7 macrophages. Western blot analysis revealed that punicalagin pre-treatment enhanced LC3II, p62 expression, and decreased Beclin1 expression in LPS-induced macrophages. MDC assays were used to determine the autophagic process and the results worked in concert with Western blot analysis. In addition, our observations indicated that LPS-induced releases of NO, TNF-α, and IL-6 were attenuated by treatment with autophagy inhibitor chloroquine, suggesting that autophagy inhibition participated in anti-inflammatory effect. We also found that punicalagin downregulated FoxO3a expression, resulting in autophagy inhibition. Overall these results suggested that punicalagin played an important role in the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages and that the mechanisms involved downregulation of the FoxO3a/autophagy signaling pathway.


2021 ◽  
Vol 22 (15) ◽  
pp. 7856
Author(s):  
Sang Min Lee ◽  
Kyung-No Son ◽  
Dhara Shah ◽  
Marwan Ali ◽  
Arun Balasubramaniam ◽  
...  

Macrophages play a critical role in the inflammatory response to environmental triggers, such as lipopolysaccharide (LPS). Inflammatory signaling through macrophages and the innate immune system are increasingly recognized as important contributors to multiple acute and chronic disease processes. Nitric oxide (NO) is a free radical that plays an important role in immune and inflammatory responses as an important intercellular messenger. In addition, NO has an important role in inflammatory responses in mucosal environments such as the ocular surface. Histatin peptides are well-established antimicrobial and wound healing agents. These peptides are important in multiple biological systems, playing roles in responses to the environment and immunomodulation. Given the importance of macrophages in responses to environmental triggers and pathogens, we investigated the effect of histatin-1 (Hst1) on LPS-induced inflammatory responses and the underlying molecular mechanisms in RAW264.7 (RAW) macrophages. LPS-induced inflammatory signaling, NO production and cytokine production in macrophages were tested in response to treatment with Hst1. Hst1 application significantly reduced LPS-induced NO production, inflammatory cytokine production, and inflammatory signaling through the JNK and NF-kB pathways in RAW cells. These results demonstrate that Hst1 can inhibit LPS-induced inflammatory mediator production and MAPK signaling pathways in macrophages.


2021 ◽  
Vol 31 (1) ◽  
pp. 7-19
Author(s):  
O. M. Kurbacheva ◽  
M. E. Dyneva ◽  
I. P. Shilovskiy ◽  
E. L. Savlevich ◽  
V. I. Kovchina ◽  
...  

The combination of bronchial asthma (BA) and chronic rhinosinusitis with nasal polyps (CRSwNP) is currently considered a separate phenotype wit1 dysregulation of pro- and anti-inflammatory cytokines as one of t1e leading causes of inflammation. The aim of this study was to investigate the local and systemic inflammatory process in patients with BA associated with CRSwNP. Methods. The study enrolled 96 volunteers divided into 4 groups: the 1st was healthy control (Normal); the 2nd had allergic BA associated with CRSwNP; the 3rd had nonallergic BA associated with CRSwNP; the 4th had CRSwNP without BA. All participants of the study underwent clinical, laboratory, instrumental, and histological examinations. The expression of il-1β, il-4, il-,5 il-6, il-13, il-37, il-17f, ifn-γ, tnf-α and tgf-β genes was assessed in the peripheral blood mononuclear cells - PBMC and in the polyp tissue using RT-PCR. We also estimated the expression of tslp, il-25 and il-33 in the polyp tissue and expression of GATA3 and RORgt transcription factors in PBMC. Results. The pathogenesis of BA associated with CRSwNP is characterized by the dys-regulation of the local pro- and anti-inflammatory cytokines of the Th1-, Th2-, Th17- immune response. Moreover, the high expression of il-37 gene in patients with BA associated with CRSwNP, and especially in patients with not-allergic BA associated with CRSwNP, probably indicates the «inclusion» of the compensatory mechanism. In addition, BA associated with CRSwNP is characterized by severe course of both diseases. A nonallergic BA associated with CRSwNP is characterized by more pronounced eosinophilic inflammation, which is an unfavorable prognostic factor. Conclusion. Thus, a comparison of the levels of local and systemic cytokine expression in patients with BA associated with CRSwNP led to the conclusion that CRSwNP affects the local immunity more than systemic immunity. However, the latter is affected to some extent in the long-term as well.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
David A Goukassian ◽  
Tengiz Tkebuchava ◽  
Evelyn Bord ◽  
Marcy Silver ◽  
Cynthia Curry ◽  
...  

Aging is a risk factor for ischemic diseases. TNF-α, a pro-inflammatory cytokine, is expressed in ischemic tissues and is known to modulate angiogenesis. Little is known about the role of TNF-α receptors (TNFR1/p55 and TNFR2/p75) in angiogenic signaling and muscle regeneration. We studied neovascularization in the hind limb ischemia (HLI) model in young and old TNFR2/p75 knockout (p75KO) and wild type (WT) age-matched controls. Between days 7–10 post-HL surgery 100% of old p75KOs experienced auto-amputation of the operated limbs, whereas none of the age-matched WT mice exhibited HL necrosis. Poor blood flow recovery in p75KOs was associated with decreased capillary density and significant reduction in the expression of VEGF mRNA transcripts in ischemic tissue. Compared to presurgery, on days 1–10 post-HL surgery there was 6–10-fold increase in the number of satellite-cells (embrionic NCAM staining) in WT mice, whereas in p75KOs after day 1 through day 10 satellite cells were not detecable. Indeed, p75KO tissue showed increased and prolonged (via day 10) inflammation - neutrophil (MPO-1) and macrophage (F/480) infiltration. Transplantation of WT/GFP (+) BM mononuclear cells into γ-irradiated p75KOs one month prior to HL surgery prevented limb loss, suggesting that ischemia-induced neovascularization and mobilization of BM-derived cells is mediated, at least in part, via TNFR2/p75 expressed in BM-derived cells. In the same BM transplantation model we evaluated the rate of proliferation (Ki67 + cells) of resident GFP (−) vs BM-derived GFP (+) cells. We found that in both WT and p75KO ischemic tissue Ki67 (+) cells almost exclusively were GFP (+), indicating that only BM-derived cells proliferate in the ischemic tissue. Interestingly, Ki67/GFP (+) cells started to appear in WT tissue by day 3 through day 21, whereas in p75KO tissue first proliferative activity was detected on day 28, suggesting extremely delayed recovery and regenaration in p75KO tissue. Our study suggests that, signaling through p75 receptor is required for collateral vessel development in ischemia-induced neovascularization as well as plays a critical role in muscle regeneration and suggest a potential gene target, which could be used to improve the repair of ischemic tissue in adults.


2020 ◽  
Vol 8 (8) ◽  
pp. 1175
Author(s):  
Sun Woo Jin ◽  
Gi Ho Lee ◽  
Min Jung Jang ◽  
Gyeong Eun Hong ◽  
Jae Young Kim ◽  
...  

Recently, Lactococcus lactis subsp. lactis has been reported to have immunostimulating properties in an immunosuppressed-animal model. However, the immunological activities of Lactococcus lactis and the molecular mechanisms remain unclear. In this report, we evaluated the immunostimulating activity and associated mechanisms of Lactococcus lactis subsp. lactis GCWB1176 (GCWB1176) in macrophages and cyclophosphamide (CTX)-induced immunosuppressed mice. In a series of safety tests, GCWB1176 was found to have a negative response to hemolysis, as well as susceptibility to antibiotics. Administration of GCWB1176 elevated natural killer (NK) cell activities; concanavalin A-induced T cell proliferation; and serum levels of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-2, IL-4, IL-10 and IL-12 in CTX-induced immunosuppressed mice. In RAW264.7 macrophages, treatment with GCWB1176 induced phagocytic activity and increased the production of nitric oxide (NO) and expression of inducible NO synthase. Simultaneously, GCWB1176 increased the production of TNF-α, IFN-γ, IL-1β, IL-10 and IL-12 from mouse splenocytes and RAW264.7 cells. In addition, GCWB1176 significantly increased the transcriptional activities of NF-κB and iNOS. Taken together, GCWB1176 improved immune function through the activation of macrophages and NK cells. These findings suggest that dietary supplementation of GCWB1176 may be used to enhance immunity.


2020 ◽  
Vol 21 (2) ◽  
pp. 413
Author(s):  
Jihae Park ◽  
Jee Taek Kim ◽  
Soo Jin Lee ◽  
Jae Chan Kim

Angiogenin (ANG) is involved in the innate immune system and inflammatory disease. The aim of this study is to evaluate the anti-inflammatory effects of ANG in an endotoxin induced uveitis (EIU) rat model and the pathways involved. EIU rats were treated with balanced salt solution (BSS), a non-functional mutant ANG (mANG), or wild-type ANG (ANG). The integrity of the blood-aqueous barrier was evaluated by the infiltrating cell and protein concentrations in aqueous humor. Histopathology, Western blot, and real-time qRT-PCR of aqueous humor and ocular tissue were performed to analyze inflammatory cytokines and transcription factors. EIU treated with ANG had decreased inflammatory cells and protein concentrations in the anterior chamber. Compared to BSS and mANG, ANG treatment showed reduced expression of IL-1β, IL-8, TNF-α, and Myd88, while the expression of IL-4 and IL-10 was increased. Western blot of ANG treatment showed decreased expression of IL-6, inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, and phosphorylated NF-κB and increased expression of IL-10. In conclusion, ANG seems to reduce effectively immune mediated inflammation in the EIU rat model by reducing the expression of proinflammatory cytokines, while increasing the expression of anti-inflammatory cytokines through pathways related to NF-κB. Therefore, ANG shows potential for effectively suppressing immune-inflammatory responses in vivo.


Sign in / Sign up

Export Citation Format

Share Document