Abstract 13113: Identification of Novel Copper-dependent Wound Repair Mechanism: Role of Copper Transport Protein Antioxidant 1

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Archita Das ◽  
Gin-Fu Chen ◽  
Ha Won Kim ◽  
Sudhahar Varadarajan ◽  
Seock-Won Youn ◽  
...  

Copper (Cu) facilitates wound healing and angiogenesis with unknown mechanism. Bioavailability of Cu is controlled by transport-proteins, including cytosolic Cu-chaperone Atox1, which is required for activation of secretory Cu enzymes. Atox1 also functions as a Cu-dependent transcription factor, but its role in wound healing is unknown. Using mouse skin puncture model, here we show that Atox1 protein (8-fold) and Cu-level (by X-ray Fluorescence Microscopy; 2.5-fold) were increased in wounding tissue in wild type (WT) mice at day 7 when Atox1 was localized in nucleus of dermal endothelial cells (ECs) as well as cytosol of epidermal cells, granulation tissue. Furthermore, topical Cu treatment enhanced (20% vs PBS), but specific Cu chelator BCS reduced wound repair in WT mice. Importantly, Atox1 knockout (KO) mice showed abolished topical Cu-induced wound repair or impaired endogenous wound healing vs. WT mice, which was associated with decreased angiogenesis (CD31+, 45% ), proliferation (BrdU+, 60%), ROS-production (DHE+), collagen formation (Masson's Trichrome), and infiltration of macrophage (Mac3+,40%) which secrets angiogenic cytokines VEGF and SDF-1α. Mechanistically, Atox1KO mice exhibited reduced wounding-induced expression of Atox1 target proteins such as p47phox NADPH oxidase and cyclin D1 as well as extracellular matrix secretory Cu-enzyme lysyl oxidase activity. Finally, bone marrow (BM) transplantation revealed that Atox1 in both BM and tissue resident cells are required for wound repair. Consistently, Atox1 protein and Cu were markedly increased in WT-BM tissue after wounding. Impaired wound healing in Atox1 KO mice was rescued by both Atox1-gene transfer and WT-BM topical treatment in wound tissues. In summary, Atox1 senses Cu to accelerate wound healing/repair by promoting angiogenesis, inflammatory cell recruitment, proliferation, extracellular matrix maturation as well as BM cell function. Taken together, Cu-Atox1-based therapy may represent a novel therapeutic strategy to promote dermal wound healing and tissue regeneration.

Development ◽  
1991 ◽  
Vol 112 (2) ◽  
pp. 651-668
Author(s):  
D.J. Whitby ◽  
M.W. Ferguson

Wound healing in the fetus occurs rapidly, by a regenerative process and without an inflammatory response, resulting in complete restitution of normal tissue function. By contrast, in the adult, wounds heal with scar formation, which may impair function and inhibit further growth. The cellular mechanisms underlying these differing forms of wound healing are unknown but the extracellular matrix (ECM), through its effects on cell function, may play a key role. We have studied the ECM in upper lip wounds of adult, neonatal and fetal mice at days 14, 16 and 18 of gestation. The spatial and temporal distribution of collagen types I, III, IV, V and VI, fibronectin, tenascin, laminin, chondroitin and heparan sulphates were examined immunohistochemically. Results from the fetal groups were essentially similar whilst there were distinct differences between fetus, neonate and adult. Fibronectin was present at the surface of the wound in all groups at 1 h post-wounding. Tenascin was also present at the wound surface but the time at which it was first present differed between fetus (1 h), neonate (12 h) and adult (24 h). The time of first appearance paralleled the rate of wound healing which was most rapid in the fetus and slowest in the adult. Tenascin inhibits the cell adhesion effect of fibronectin and during development the appearance of tenascin correlates with the initiation of cell migration. During wound healing the appearance of tenascin preceded cell migration and the rapid closure of fetal wounds may be due to the early appearance of tenascin in the wound. Collagen types I, III, IV, V and VI were present in all three wound groups but the timing and pattern of collagen deposition differed, with restoration of the normal collagen pattern in the fetus and a scar pattern in the adult. This confirms that lack of scarring in fetal wounds is due to the organisation of collagen within the wound and not simply lack of collagen formation. The distribution of chondroitin sulphate differed between normal fetal and adult tissues and between fetal and adult wounds. Its presence in the fetal wound may alter collagen fibril formation. No inflammatory response was seen in the fetal wounds. The differences in the ECM of fetal and adult wounds suggests that it may be possible to alter the adult wound so that it heals by a fetal-like process without scar formation, loss of tissue function or restriction of growth.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Archita Das ◽  
Gin-Fu Chen ◽  
Ha Won Kim ◽  
Seock-Won Youn ◽  
Sudhahar Varadarajan ◽  
...  

Background: Wound healing is important repair process after injury associated with inflammation and angiogenesis. Copper (Cu) plays an important role in wound healing and angiogenesis; however, underlying mechanism is unknown. Bioavailability of Cu is tightly controlled by transport proteins (Cu importer CTR1 and Cu exporter ATP7A) and chaperone (antioxidant-1, Atox1) which transfers Cu to ATP7A. We reported that Atox1 also functions as a Cu-dependent transcription factor; however, its role in wound healing is unclear. Results: Using mouse skin puncture model, here we show that, Atox 1 protein (8 fold) and Cu level (by X-ray Fluorescence Microscope; 2.5 fold) increased in skin after wounding in WT mice at day 7 when Atox1 was localised in the nucleus of dermis endothelial cell (ECs) and ATP7A was markedly decreased. ATP7A transgenic mice showed impaired wound healing. Atox1 knockout (KO) mice exhibited decrease in wound repair (40% inhibition vs. WT, day 7) which was rescued by Atox1 gene transfer by lentivirus. Macrophage which secrets angiogenic cytokines/chemokines was significantly reduced which resulted in decreased VEGF and SDF-1α protein and angiogenesis at day 7. In cultured human ECs, inflammatory cytokine TNF-stimulation significantly decreased ATP7A protein (80%) and increased intracellular Cu and Atox1 in nucleus. ATP7A knockdown with siRNA in ECs increased intracellular Cu and promoted nuclear Atox1, which were rescued by Cu importer CTR1 siRNA or Cu chelator BCS, indicating ATP7A downregulation-induced Cu accumulation is required for Atox1 nuclear translocation. By screening Atox1 target genes, we found that NADPH oxidase p47phox promoter contains Atox1 binding responsible element. p47phox protein expression was significantly increased by wounding or overexpression of nuclear-targeted Atox1, which was markedly decreased in Atox1 KO mice with its downstream VCAM1/ICAM1. Conclusions: Cu chaperone Atox1 functions as a transcription factor by sensing ATP7A downregulation-induced intracellular Cu to upregulate NADPH oxidase p47phox and its downstream redox-sensitive VCAM1/ICAM1 expression in response to injury. This in turn promotes inflammatory cell recruitment and angiogenesis, and thus stimulating wound repair.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Pawel Olczyk ◽  
Łukasz Mencner ◽  
Katarzyna Komosinska-Vassev

Wound healing is the physiologic response to tissue trauma proceeding as a complex pathway of biochemical reactions and cellular events, secreted growth factors, and cytokines. Extracellular matrix constituents are essential components of the wound repair phenomenon. Firstly, they create a provisional matrix, providing a structural integrity of matrix during each stage of healing process. Secondly, matrix molecules regulate cellular functions, mediate the cell-cell and cell-matrix interactions, and serve as a reservoir and modulator of cytokines and growth factors’ action. Currently known mechanisms, by which extracellular matrix components modulate each stage of the process of soft tissue remodeling after injury, have been discussed.


2001 ◽  
Vol 12 (5) ◽  
pp. 373-398 ◽  
Author(s):  
Bjorn Steffensen ◽  
Lari Häkkinen ◽  
Hannu Larjava

During wound-healing, cells are required to migrate rapidly into the wound site via a proteolytically generated pathway in the provisional matrix, to produce new extracellular matrix, and, subsequently, to remodel the newly formed tissue matrix during the maturation phase. Two classes of molecules cooperate closely to achieve this goal, namely, the matrix adhesion and signaling receptors, the integrins, and matrix-degrading and -processing enzymes, the matrix metalloproteinases (MMPs). There is now substantial experimental evidence that blocking key molecules of either group will prevent or seriously delay wound-healing. It has been known for some time now that cell adhesion by means of the integrins regulates the expression of MMPs. In addition, certain MMPs can bind to integrins or other receptors on the cell surface involved in enzyme activation, thereby providing a mechanism for localized matrix degradation. By proteolytically modifying the existing matrix molecules, the MMPs can then induce changes in cell behavior and function from a state of rest to migration. During wound repair, the expression of integrins and MMPs is simultaneously up-regulated. This review will focus on those aspects of the extensive knowledge of fibroblast and keratinocyte MMPs and integrins in biological processes that relate to wound-healing.


2011 ◽  
Vol 47 (1) ◽  
pp. 39-44 ◽  
Author(s):  
J. Weinreich ◽  
S. Löb ◽  
M. Löffler ◽  
I. Königsrainer ◽  
D. Zieker ◽  
...  

2013 ◽  
Vol 12 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Paola Koenen ◽  
Timo A Spanholtz ◽  
Marc Maegele ◽  
Ewa Stürmer ◽  
Thomas Brockamp ◽  
...  

2003 ◽  
Vol 5 (23) ◽  
pp. 1-39 ◽  
Author(s):  
Marc A. Lafleur ◽  
Madeleine M. Handsley ◽  
Dylan R. Edwards

Angiogenesis, the formation of new blood vessels from the pre-existing vasculature, is an integral part of physiological processes such as embryonic development, the female reproductive cycle and wound healing. Angiogenesis is also central to a variety of pathologies including cancer, where it is recognised as being crucial for the growth of solid tumours. Matrix metalloproteinases (MMPs) are a family of soluble and membrane-anchored proteolytic enzymes that can degrade components of the extracellular matrix (ECM) as well as a growing number of modulators of cell function. Several of the MMPs, most notably MMP-2 and -9 and membrane-type-1 MMP (MT1-MMP), have been linked to angiogenesis. Potential roles for these proteases during the angiogenic process include degradation of the basement membrane and perivascular ECM components, liberation of angiogenic factors, production of endogenous angiogenic inhibitors, and the unmasking of cryptic biologically relevant sites in ECM components. This review brings together what is currently known about the functions of the MMPs and the closely related adamalysin metalloproteinase (ADAM) family in angiogenesis, and discusses how this information might be useful in manipulation of the angiogenic process, with a view to controlling aberrant neovascularisation.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1182
Author(s):  
Hanif Haidari ◽  
Richard Bright ◽  
Sanjay Garg ◽  
Krasimir Vasilev ◽  
Allison J. Cowin ◽  
...  

Biofilm-associated infections are a major cause of impaired wound healing. Despite the broad spectrum of anti-bacterial benefits provided by silver nanoparticles (AgNPs), these materials still cause controversy due to cytotoxicity and a lack of efficacy against mature biofilms. Herein, highly potent ultrasmall AgNPs were combined with a biocompatible hydrogel with integrated synergistic functionalities to facilitate elimination of clinically relevant mature biofilms in-vivo combined with improved wound healing capacity. The delivery platform showed a superior release mechanism, reflected by high biocompatibility, hemocompatibility, and extended antibacterial efficacy. In vivo studies using the S. aureus wound biofilm model showed that the AgNP hydrogel (200 µg/g) was highly effective in eliminating biofilm infection and promoting wound repair compared to the controls, including silver sulfadiazine (Ag SD). Treatment of infected wounds with the AgNP hydrogel resulted in faster wound closure (46% closure compared to 20% for Ag SD) and accelerated wound re-epithelization (60% for AgNP), as well as improved early collagen deposition. The AgNP hydrogel did not show any toxicity to tissue and/or organs. These findings suggest that the developed AgNP hydrogel has the potential to be a safe wound treatment capable of eliminating infection and providing a safe yet effective strategy for the treatment of infected wounds.


2021 ◽  
Vol 17 (2) ◽  
pp. 12-19
Author(s):  
O.I. Myronenko ◽  
T.I. Panova ◽  
L.V. Natrus ◽  
S.V. Verevka

Relevance. Diabetic foot syndrome is a common complication that is characterized by the development of chronic ulcers. Among the mechanisms of impaired wound healing, the leading role is played by disturbance of extracellular matrix homeostasis: chronic hyperglycemia, on the one hand, promotes the formation of so-called advanced glycation end products (AGEs), which mediate pro-inflammatory activation of immune cells, and on the other hand, inhibits fibroblasts proliferation and collagen production, disrupts the migration of keratinocytes and endothelial cells. Therefore, the elimination of AGEs is a pathogenetic approach in diabetic wound treatment. For this purpose, a composite consisting of polyspecific microbial proteinases fixed on polymeric porous nanoparticles was developed. The activity of matrix metalloproteinase-2 (MMP-2) was chosen as a prognostic indicator of chronic wound healing. Objective: to study the activity of MMP-2 in the tissues of the burn wound of rats with simulated diabetes mellitus under the influence of enzyme-containing nanoparticles. Materials and methods. N = 48 Wistar rats were used in the experiment. Diabetes mellitus was induced by administration of 50 mg/kg of streptozotocin. To model the wound in rats, a standard animal model of thermal burns by Walker and Mason was used. Thermal damage corresponded to the II-IIIA degree of burns, and occupied 19±1.6% of the total area of ​​animal skin. Rats were divided into two groups of 24 animals each: the DM group did not receive any treatment, and rats from the DM+T group were daily applied to the burn wound with the mentioned composite (enzyme-containing nanoparticles). Animals were removed from the experiment on days 3, 7, 14 and 21 of observation. The activity of MMP-2 in the tissues of the burn wound of diabetic rats was studied by gelatin zymography, expressed in arbitrary units (AU). Statistical data processing was performed in the software package SPSS Statistics Base, v.22 with Student and Scheffe tests. Results. The level of activity of MMP-2 in the tissues of the burn wound of rats in the DM group on the 3rd day of the study was 4.9 ± 1.3 AU, increased by 7 days (p <0.01) and reached a maximum level of 52.55 ± 3.06 AU at day 14 (p <0.01). On day 21, the activity of the test enzyme decreased by 8.5 AU (p <0.01), compared to day 14. On day 3 of the study in the DM+T group, the activity of MMP-2 in the diabetic wound was 15.93 ± 2.68 AU and gradually decreased (p <0.01) to 5.67 ± 2.67 AU on day 14. However, on day 21, the second peak (p <0.01) of the activity of the studied enzyme was observed - 33.64 ± 4.1 AU. When comparing the two groups (DmM and DM+T) on day 3 of the study, the activity of MMP-2 in the tissues of the burn wound of rats in the DM+T group was three times higher (p <0.01) than in the DM group. But from the 7th day the activity of MMP-2 in the DM group was higher than the DM+T group. On day 21 of the study, the level of MMP-2 in the DM group remained higher (p <0.01) than in the DM+T group. Conclusions. The use of enzyme-containing nanoparticles provides effective degradation of glycosylated components of the extracellular matrix (AGEs), thereby reducing the inflammatory process and activity of MMP-2, and promoting wound healing in rats with streptozotocin-induced diabetes.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Martina Balli ◽  
Jonathan Sai-Hong Chui ◽  
Paraskevi Athanasouli ◽  
Willy Antoni Abreu de Oliveira ◽  
Youssef El Laithy ◽  
...  

Impaired wound healing and tissue regeneration have severe consequences on the patient’s quality of life. Micrograft therapies are emerging as promising and affordable alternatives to improve skin regeneration by enhancing the endogenous wound repair processes. However, the molecular mechanisms underpinning the beneficial effects of the micrograft treatments remain largely unknown. In this study, we identified the active protein-1 (AP-1) member Fos-related antigen-1 (Fra-1) to play a central role in the extracellular signal-regulated kinase- (ERK-) mediated enhanced cell migratory capacity of soluble micrograft-treated mouse adult fibroblasts and in the human keratinocyte cell model. Accordingly, we show that increased micrograft-dependent in vitro cell migration and matrix metalloprotease activity is abolished upon inhibition of AP-1. Furthermore, soluble micrograft treatment leads to increased expression and posttranslational phosphorylation of Fra-1 and c-Jun, resulting in the upregulation of wound healing-associated genes mainly involved in the regulation of cell migration. Collectively, our work provides insights into the molecular mechanisms behind the cell-free micrograft treatment, which might contribute to future advances in wound repair therapies.


Sign in / Sign up

Export Citation Format

Share Document