Abstract 15820: Differential Myocardial Gene Expression of Glucose Transporters in Heart Transplant Recipients With and Without Diabetes Mellitus

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Marc Vanderheyden ◽  
Leen Delrue ◽  
Sofie Verstreken ◽  
Riet Dierckx ◽  
Ward Heggermont ◽  
...  

Introduction: The Sodium Glucose cotransporter (SGLT) and glucose transporters(GLUTs) play a crucial role in cellular glucose transport. Although experimental data have shown differential regulation of GLUT4 and SGLT in diabetic cardiomyopathy, the impact of diabetes mellitus (DM) upon myocardial glucose transporters in humans remains undetermined. Aim: To better understand the impact of elevated glucose levels upon myocardial expression of glucose transporters, the endomyocardial gene expression of GLUT1, GLUT4 and SGLT1 was investigated in heart transplant(HTx) recipients, with and without DM, who received a heart from a DM- donor. Methods: At baseline(BL), immediately after HTx and 12 ± 2 months(FU) later, serial endomyocardial biopsies were procured in 26 Htx pts, free of clinical or histological rejection, at time of routine surveillance biopsy. Patients were categorized in DM+ (n = 13pts) and DM- (n = 13 pts), according to the presence of diabetes mellitus (DM) at FU. Results: Despite similar hemodynamics and HbA1c levels at BL, DM+ pts had higher HbA1c levels (46,00 ± 13,79 vs 38,33 ± 4,88; p < 0,05) at FU. No differences were noted in BL GLUT1, GLUT4 and SGLT gene expression between both groups. In DM- pts SGLT1(0,081 ± 0,080 vs 0,188 ± 0,108; p = 0,0036) , GLUT4(0,076 ± 0,068 vs 0,137 ± 0,065; p = 0,0011 )and GLUT1(0,020 ± 0,021 vs 0,022 ± 0,009; p = 0,043) increased significantly at FU whereas no change was observed in DM+ pts. Conclusion: Similar to experimental data, differential endomyocardial regulation in SGLT1 and GLUT4 was noted between DM+ and DM-pts with a blunted upregulation of glucose transporters at 1 year in DM+ HTx pts. These observations are in line with experimental data and suggest that myocardial glucose uptake is differentially regulated in DM+ HTx pts.

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Chadakarn Phaloprakarn ◽  
Siriwan Tangjitgamol

Abstract Background Blood glucose levels during pregnancy may reflect the severity of insulin secretory defects and/or insulin resistance during gestational diabetes mellitus (GDM) pregnancy. We hypothesized that suboptimal glycemic control in women with GDM could increase the risk of postpartum type 2 diabetes mellitus (T2DM) or prediabetes. Our objective was to evaluate the impact of plasma glucose levels throughout GDM pregnancy on the risk of postpartum T2DM or prediabetes. Methods The medical records of 706 women with GDM who underwent a postpartum 75-g, 2-hour oral glucose tolerance test at our institution between January 2011 and December 2018 were reviewed. These women were classified into 2 groups according to glycemic control during pregnancy: ≤ 1 occasion of either fasting glucose ≥ 95 mg/dL or 2-hour postprandial glucose ≥ 120 mg/dL was defined as optimal glycemic control or else was classified as suboptimal glycemic control. Rates of postpartum T2DM and prediabetes were compared between women with optimal (n = 505) and suboptimal (n = 201) glycemic control. Results The rates of postpartum T2DM and prediabetes were significantly higher in the suboptimal glycemic control group than in the optimal glycemic control group: 22.4% vs. 3.0%, P < 0.001 for T2DM and 45.3% vs. 23.5%, P < 0.001 for prediabetes. In a multivariate analysis, suboptimal glucose control during pregnancy was an independent risk factor for developing either postpartum T2DM or prediabetes. The adjusted odds ratios were 8.4 (95% confidence interval, 3.5–20.3) for T2DM and 3.9 (95% confidence interval, 2.5–6.1) for prediabetes. Conclusion Our findings suggest that blood glucose levels during GDM pregnancy have an impact on the risk of postpartum T2DM and prediabetes.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Abhinav Goyal ◽  
Rafael Diaz ◽  
Hertzel C Gerstein ◽  
Rizwan Afzal ◽  
Shamir R Mehta ◽  
...  

Introduction: According to clinical risk assessment guidelines, a history of diabetes mellitus (DM) portends poor outcomes following acute MI. Elevated in-hospital glucose levels also predict early mortality in acute MI patients, but the degree to which glucose levels and diabetic history independently predict post-MI mortality is unclear. Methods and Hypothesis: We analyzed data from the combined cohort of the CREATE-ECLA and OASIS-6 randomized trials that evaluated the impact of glucose-insulin-potassium (GIK) infusion versus no infusion on 30-day mortality in 22,943 patients hospitalized with acute ST-elevation MI. We calculated the average in-hospital glucose level for each patient (mean of the admission, 6-hour, and 24-hour glucose levels). Logistic regression was performed to determine whether average glucose level and history of DM remained significant mortality predictors after adjusting for age, sex, and GIK allocation. Results: Glucose data were recorded in 22,860 (99.6%) patients; 10,050 (44%) had an average in-hospital glucose level ≥ 8 mmol/L (144 mg/dL), of whom 65% did not have known prior DM. Among patients with glucose >8 mmol/L, 30-day mortality rates were similar in patients with and without known DM (Figure ). In-hospital glucose, but not history of DM, was a significant multivariable predictor of mortality (Table). Conclusions: By considering only history of DM and not in-hospital glucose levels, risk assessment guidelines for acute MI overlook a large proportion of patients at high risk for early death. Therefore, clinicians should emphasize elevated glucose levels in addition to history of DM as a risk marker in patients with acute MI.


2020 ◽  
Vol 8 (1) ◽  
pp. e001243
Author(s):  
Jackson Nteeba ◽  
Kaela M Varberg ◽  
Regan L Scott ◽  
Mikaela E Simon ◽  
Khursheed Iqbal ◽  
...  

IntroductionThe hemochorial placenta provides a critical barrier at the maternal–fetal interface to modulate maternal immune tolerance and enable gas and nutrient exchange between mother and conceptus. Pregnancy outcomes are adversely affected by diabetes mellitus; however, the effects of poorly controlled diabetes on placental formation, and subsequently fetal development, are not fully understood.Research design and methodsStreptozotocin was used to induce hyperglycemia in pregnant rats for the purpose of investigating the impact of poorly controlled diabetes on placental formation and fetal development. The experimental paradigm of hypoxia exposure in the pregnant rat was also used to assess properties of placental plasticity. Euglycemic and hyperglycemic rats were exposed to ambient conditions (~21% oxygen) or hypoxia (10.5% oxygen) beginning on gestation day (gd) 6.5 and sacrificed on gd 13.5. To determine whether the interaction of hyperglycemia and hypoxia was directly altering trophoblast lineage development, rat trophoblast stem (TS) cells were cultured in high glucose (25 mM) and/or exposed to low oxygen (0.5% to 1.5%).ResultsDiabetes caused placentomegaly and placental malformation, decreasing placental efficiency and fetal size. Elevated glucose disrupted rat TS cell differentiation in vitro. Evidence of altered trophoblast differentiation was also observed in vivo, as hyperglycemia affected the junctional zone transcriptome and interfered with intrauterine trophoblast invasion and uterine spiral artery remodeling. When exposed to hypoxia, hyperglycemic rats showed decreased proliferation and ectoplacental cone development on gd 9.5 and complete pregnancy loss by gd 13.5. Furthermore, elevated glucose concentrations inhibited TS cell responses to hypoxia in vitro.ConclusionsOverall, these results indicate that alterations in placental development, efficiency, and plasticity could contribute to the suboptimal fetal outcomes in offspring from pregnancies complicated by poorly controlled diabetes.


Diabetes Care ◽  
2008 ◽  
Vol 31 (5) ◽  
pp. 1037-1039 ◽  
Author(s):  
D. B. Carr ◽  
K. M. Newton ◽  
K. M. Utzschneider ◽  
J. Tong ◽  
F. Gerchman ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1758
Author(s):  
Isabelle Austin-Zimmerman ◽  
Marta Wronska ◽  
Baihan Wang ◽  
Haritz Irizar ◽  
Johan Hilge Thygesen ◽  
...  

CYP2D6 and CYP2C19 enzymes are essential in the metabolism of antidepressants and antipsychotics. Genetic variation in these genes may increase risk of adverse drug reactions. Antidepressants and antipsychotics have previously been associated with risk of diabetes. We examined whether individual genetic differences in CYP2D6 and CYP2C19 contribute to these effects. We identified 31,579 individuals taking antidepressants and 2699 taking antipsychotics within UK Biobank. Participants were classified as poor, intermediate, or normal metabolizers of CYP2D6, and as poor, intermediate, normal, rapid, or ultra-rapid metabolizers of CYP2C19. Risk of diabetes mellitus represented by HbA1c level was examined in relation to the metabolic phenotypes. CYP2D6 poor metabolizers taking paroxetine had higher Hb1Ac than normal metabolizers (mean difference: 2.29 mmol/mol; p < 0.001). Among participants with diabetes who were taking venlafaxine, CYP2D6 poor metabolizers had higher HbA1c levels compared to normal metabolizers (mean differences: 10.15 mmol/mol; p < 0.001. Among participants with diabetes who were taking fluoxetine, CYP2D6 intermediate metabolizers and decreased HbA1c, compared to normal metabolizers (mean difference −7.74 mmol/mol; p = 0.017). We did not observe any relationship between CYP2D6 or CYP2C19 metabolic status and HbA1c levels in participants taking antipsychotic medication. Our results indicate that the impact of genetic variation in CYP2D6 differs depending on diabetes status. Although our findings support existing clinical guidelines, further research is essential to inform pharmacogenetic testing for people taking antidepressants and antipsychotics.


2021 ◽  
Author(s):  
Emilia Scheidecker ◽  
Benjamin Pereira-Zimmermann ◽  
Arne Potreck ◽  
Dominik F. Vollherbst ◽  
Markus A. Möhlenbruch ◽  
...  

Abstract Purpose Diabetes is associated with vascular dysfunction potentially impairing collateral recruitment in acute ischemic stroke. This retrospective study aimed at analyzing the impact of diabetes on collateralization assessed on dynamic CTA. Methods Collaterals were retrospectively assessed on CT perfusion–derived dynamic CTA according to the mCTA score by Menon in a cohort of patients with an acute occlusion of the M1 segment or carotid T. The extent of collateral circulation was related to the history of diabetes and to admission blood glucose and HbA1c levels. Results Two hundred thirty-nine patients were included. The mCTA collateral score was similar in patients with diabetes (median 3, interquartile range 3–4) and without diabetes (median 4, interquartile range 3–4) (P = 0.823). Diabetes was similarly frequent in patients with good (18.8%), intermediate (16.1%), and poor collaterals (16.0%) (P = 0.355). HbA1c was non-significantly higher in patients with poor collaterals (6.3 ± 1.5) compared to patients with intermediate (6.0 ± 0.9) and good collaterals (5.8 ± 0.9) (P = 0.061). Blood glucose levels were significantly higher in patients with poor compared to good collaterals (mean 141.6 vs. 121.8 mg/dl, P = 0.045). However, there was no significant difference between good and intermediate collaterals (mean 121.8 vs. 129.5 mg/dl, P = 0.161) as well as between intermediate and poor collaterals (129.5 vs. 141.6 mg/dl, P = 0.161). Conclusion There was no statistically significant difference among patients with good, intermediate, and poor collaterals regarding the presence of diabetes or HbA1c level on admission. However, stroke patients with poor collaterals tend to have higher blood glucose and HbA1c levels.


1994 ◽  
Vol 5 (5) ◽  
pp. S29
Author(s):  
J H Dominguez ◽  
B Song ◽  
L Maianu ◽  
W T Garvey ◽  
M Qulali

The functions of absorption of dietary glucose by the small intestine and reabsorption of filtered glucose by the renal proximal tubule are strikingly similar in their organization and in the way they adapt to uncontrolled diabetes mellitus. In both cases, transepithelial glucose and Na+ fluxes are augmented. The epithelial adaptations to hyperglycemia of uncontrolled diabetes are accomplished by increasing the glucose transport surface area and the number of the efflux glucose transporter GLUT2 located in the basolateral membrane. The signals that modify the size of the epithelium and the overexpression of basolateral GLUT2 are not known. It was speculated that high glucose levels and enhanced Na+ flux may be important factors in the signaling event that culminates in a renal and intestinal epithelium that is modified to transport higher rates of glucose against a higher extracellular level of glucose.


Author(s):  
Kumar Gaurav

Diabetes is said to be derived from a Greek word Diabetes which means siphon. Siphon means to pass through and the Latin word Mellitus meaning sweet. Diabetes Mellitus is a disease which disrupts normal metabolism by the process of elevation in blood glucose levels. Insulin hormone cannot move glucose into the cells from the blood which results in increased accumulation of glucose in blood. As of now there is no cure for diabetes but with regular exercise and proper meal planning, one can control the diabetes. Diabetes comes in different forms such as Prediabetes, T1DM, T2DM and Gestational diabetes. A diabetic person with long history of diabetes is prone to impaired bone structure and has high risks of bone fracture. So, the controlling of diabetes become necessary to avoid complications regarding bone fragility. In this review, I will emphasis on the impact of diabetes mellitus on bones.


2021 ◽  
Author(s):  
Olga Marshinskaia ◽  
Tatiana Kazakova ◽  
Svetlana Notova ◽  
Maksim Molchanov

This study examined the elemental status of the hair and blood biochemistry of young men in the Orenburg region (n=38) with different glucose levels. Estimation of the element status was carried out through the study of the chemical composition of the hair by ICP-AES and ICP-MS. It was found that the studied serum parameters (Ca, Mg, Fe, P cholesterol, thyroxine, TSH and testosterone) were within normal values, and no statistically significant differences were obtained when comparing the groups. The concentration of chemical elements in the hair of the men in each group was in the range of physiologically acceptable values for this region. In the group with elevated glucose levels, there was a tendency for the men to have lower values of Ca and Mg, and higher levels of K, Na, P and a number of toxic elements (Al, Cd, Sn, Hg, Pb). Keywords: elemental status, trace elements, diabetes mellitus, metabolism


Sign in / Sign up

Export Citation Format

Share Document