Abstract 128: Leptin: A Regulator of Aldosterone Synthase Expression & Aldosterone Secretion in Visceral Adipocytes, in Mice

Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Eric J Belin de Chantemele ◽  
Anne-Cecile Huby ◽  
P. T Menk ◽  
Weiqin Chen ◽  
Brian Lane ◽  
...  

Obesity is associated with inappropriately high aldosterone levels, which contribute to the development of metabolic and cardiovascular disorders. The origin of these high aldosterone levels is incompletely understood. We recently demonstrated that the adipocyte-derived hormone leptin regulates aldosterone synthase (CYP11B2) expression and stimulates aldosterone release from adrenal zona glomerulosa cells. Recent studies demonstrate that adipocytes express CYP11B2 and secrete aldosterone. However, the mechanisms regulating aldosterone release from adipocytes remain unclear. Likewise, whether visceral (Visc) and subcutaneous (SubQ) adipose tissue contribute to a similar extent to aldosterone production is unknown. We tested the hypothesis that leptin increases adipocyte CYP11B2 expression and aldosterone production and investigated whether Visc and SubQ adipose tissues respond similarly to leptin. Immunostaining of mouse adipose tissue cross-sections and isolated mature adipocytes revealed that Visc and SubQ adipose tissue express leptin receptors. Treatment of mouse freshly isolated mature adipocytes, non-differenciated (stromal fraction) and differentiated adipocytes revealed that leptin dose-dependently increased CYP11B2 expression and aldosterone production in Visc adipose tissue only. Although leptin receptor and CYP11B2 levels were similar in SubQ and Visc adipocytes, SubQ adipocytes were unresponsive to leptin. The physiological relevance of these in vitro data was tested by measuring plasma aldosterone levels in mice deprived of adipose tissue (lipodystrophic mice) treated with leptin. Absence of adipose tissue in lipodystrophic mice blunted leptin-induced increases in aldosterone levels (WT-vehicle: 471±82 vs. WT-Leptin: 1699±396, p<0.05; KO-vehicle: 539±71 vs. KO+leptin: 787±156, NS). The human relevance of these data was determined by reporting that CYP11B2 expression gradually increased with body mass index in human mediastinal and omental fat depots. In summary these data strongly suggest that leptin regulates CYP11B2 levels and aldosterone release in visceral adipose tissue and that leptin-induced, adipocyte-derived aldosterone may contribute to obesity-associated hyperaldosteronism.

1994 ◽  
Vol 76 (2) ◽  
pp. 689-693 ◽  
Author(s):  
H. Raff ◽  
B. Jankowski

We have demonstrated that the aldosteronogenic pathway of the zona glomerulosa is unusually sensitive to modest changes in PO2 (Michaelis constant for O2 approximately 95 Torr). The current study evaluated the interaction of CO (the classic ligand for P-450 enzymes) and the decreases in O2 on aldosteronogenesis in vitro. Bovine adrenocortical zona glomerulosa cells were incubated for 2 h and stimulated with either adenosine 3′,5′-cyclic monophosphate (cAMP) or angiotensin II. Ten and 20% CO led to significant decreases in cAMP- and angiotensin II-stimulated aldosteronogenesis. The combination of 20% CO and moderate decreases in PO2 (from approximately 140 to approximately 100 Torr) led to an interactive decrease in aldosterone production. The conversion of corticosterone to aldosterone catalyzed by aldosterone synthase, which is the site of O2 sensitivity, was not significantly inhibited by CO. We conclude that the aldosterone pathway is not exceptionally sensitive to CO compared with other steroidogenic pathways. This observation suggests that the unique O2-sensitive properties of the aldosterone pathway located primarily within aldosterone synthase may not reside in its CO binding site (i.e., heme).


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1210
Author(s):  
Amy K. Hauck ◽  
Tong Zhou ◽  
Ambuj Upadhyay ◽  
Yuxiang Sun ◽  
Michael B. O’Connor ◽  
...  

Oxidative stress is a hallmark of metabolic disease, though the mechanisms that define this link are not fully understood. Irreversible modification of proteins by reactive lipid aldehydes (protein carbonylation) is a major consequence of oxidative stress in adipose tissue and the substrates and specificity of this modification are largely unexplored. Here we show that histones are avidly modified by 4-hydroxynonenal (4-HNE) in vitro and in vivo. Carbonylation of histones by 4-HNE increased with age in male flies and visceral fat depots of mice and was potentiated in genetic (ob/ob) and high-fat feeding models of obesity. Proteomic evaluation of in vitro 4-HNE- modified histones led to the identification of both Michael and Schiff base adducts. In contrast, mapping of sites in vivo from obese mice exclusively revealed Michael adducts. In total, we identified 11 sites of 4-hydroxy hexenal (4-HHE) and 10 sites of 4-HNE histone modification in visceral adipose tissue. In summary, these results characterize adipose histone carbonylation as a redox-linked epigenomic mark associated with metabolic disease and aging.


2018 ◽  
Vol 51 (3) ◽  
pp. 1051-1068 ◽  
Author(s):  
Jèssica Latorre ◽  
José M. Moreno-Navarrete ◽  
Mónica Sabater ◽  
Maria Buxo ◽  
José I. Rodriguez-Hermosa ◽  
...  

Background/Aims: Obesity is characterized by the immune activation that eventually dampens insulin sensitivity and changes metabolism. This study explores the impact of different inflammatory/ anti-inflammatory paradigms on the expression of toll-like receptors (TLR) found in adipocyte cultures, adipose tissue, and blood. Methods: We evaluated by real time PCR the impact of acute surgery stress in vivo (adipose tissue) and macrophages (MCM) in vitro (adipocytes). Weight loss was chosen as an anti-inflammatory model, so TLR were analyzed in fat samples collected before and after bariatric surgery-induced weight loss. Associations with inflammatory and metabolic parameters were analyzed in non-obese and obese subjects, in parallel with gene expression measures taken in blood and isolated adipocytes/ stromal-vascular cells (SVC). Treatments with an agonist of TLR3 were conducted in human adipocyte cultures under normal conditions and upon conditions that simulated the chronic low-grade inflammatory state of obesity. Results: Surgery stress raised TLR1 and TLR8 in subcutaneous (SAT), and TLR2 in SAT and visceral (VAT) adipose tissue, while decreasing VAT TLR3 and TLR4. MCM led to increased TLR2 and diminished TLR3, TLR4, and TLR5 expressions in human adipocytes. The anti-inflammatory impact of weight loss was concomitant with decreased TLR1, TLR3, and TLR8 in SAT. Cross-sectional associations confirmed increased V/ SAT TLR1 and TLR8, and decreased TLR3 in obese patients, as compared with non-obese subjects. As expected, TLR were predominant in SVC and adipocyte precursor cells, even though expression of all of them but TLR8 (very low levels) was also found in ex vivo isolated and in vitro differentiated adipocytes. Among SVC, CD14+ macrophages showed increased TLR1, TLR2, and TLR7, but decreased TLR3 mRNA. The opposite patterns shown for TLR2 and TLR3 in V/ SAT, SVC, and inflamed adipocytes were observed in blood as well, being TLR3 more likely linked to lymphocyte instead of neutrophil counts. On the other hand, decreased TLR3 in adipocytes challenged with MCM dampened lipogenesis and the inflammatory response to Poly(I:C). Conclusion: Functional variations in the expression of TLR found in blood and hypertrophied fat depots, namely decreased TLR3 in lymphocytes and inflamed adipocytes, are linked to metabolic inflammation.


1993 ◽  
Vol 265 (4) ◽  
pp. R820-R825
Author(s):  
H. Raff ◽  
B. Jankowski

Acidosis increases and hypoxia decreases aldosterone production from the adrenal zona glomulerosa in vivo, in situ, and in vitro. These effects appear to be located at different steps in the steroidogenic process. Because respiratory acidosis and hypoxemia are common sequelae of chronic lung disease, the present experiments evaluated the interaction of hypoxia and CO2 (with uncompensated or compensated extracellular pH) on aldosteronogenesis in vitro. Bovine adrenal zona glomerulosa cells were stimulated with angiotensin II (ANG II) or adenosine 3',5'-cyclic monophosphate under room air control (21% O2-0% CO2), CO2 per se (21% O2-10% CO2), hypoxia per se (10% O2-0% CO2), and the combination of CO2 and hypoxia (10% O2-10% CO2). Furthermore, under CO2, pH was either allowed to decrease from 7.2 to 6.8 (uncompensated) or its decrease was minimized (> 7.05) with NaOH (compensated). CO2 without pH compensation led to a significant increase in ANG II-stimulated aldosterone release; when the decrease in pH was minimized, CO2 inhibited ANG II-stimulated aldosterone release. Hypoxia inhibited aldosterone release; the inhibitory effect of hypoxia predominated when combined with CO2. In the presence of cyanoketone, pregnenolone production from endogenous precursors (early pathway) was unaffected. However, the conversion of corticosterone to aldosterone (late pathway) was inhibited by low O2 but unaffected by CO2. It is concluded that the inhibitory effect of low O2 on the late pathway predominates over the effects of uncompensated or compensated simulated respiratory acidosis on aldosteronogenesis.


Endocrinology ◽  
2013 ◽  
Vol 154 (4) ◽  
pp. 1565-1576 ◽  
Author(s):  
Mohsin Syed ◽  
Michael Cozart ◽  
Anessa C. Haney ◽  
Noor Akhter ◽  
Angela K. Odle ◽  
...  

Abstract Deletion of the signaling domain of leptin receptors selectively in somatotropes, with Cre-loxP technology, reduced the percentage of immunolabeled GH cells and serum GH. We hypothesized that the deficit occurred when leptin's postnatal surge failed to stimulate an expansion in the cell population. To learn more about the deficiency in GH cells, we tested their expression of GHRH receptors and GH mRNA and the restorative potential of secretagogue stimulation in vitro. In freshly plated dissociated pituitary cells from control male mice, GHRH alone (0.3 nM) increased the percentage of immunolabeled GH cells from 27 ± 0.05% (vehicle) to 42 ± 1.8% (P &lt; .002) and the secretion of GH 1.8–3×. Deletion mutant pituitary cells showed a 40% reduction in percentages of immunolabeled GH cells (16.7 ± 0.4%), which correlated with a 47% reduction in basal GH levels (50 ng/mL control; 26.7 ng/mL mutants P = .01). A 50% reduction in the percentage of mutant cells expressing GHRH receptors (to 12%) correlated with no or reduced responses to GHRH. Ghrelin alone (10 nM) stimulated more GH cells in mutants (from 16.7–23%). When added with 1–3 nM GHRH, ghrelin restored GH cell percentages and GH secretion to levels similar to those of stimulated controls. Counts of somatotropes labeled for GH mRNA confirmed normal percentages of somatotropes in the population. These discoveries suggest that leptin may optimize somatotrope function by facilitating expression of membrane GHRH receptors and the production or maintenance of GH stores.


Reproduction ◽  
2006 ◽  
Vol 132 (5) ◽  
pp. 771-780 ◽  
Author(s):  
A G Ricci ◽  
M P Di Yorio ◽  
A G Faletti

The aims of this study were to investigate the negative action of leptin on some intraovarian ovulatory mediators during the ovulatory process and to assess whether leptin is able to alter the expression of its ovarian receptors. Immature rats primed with gonadotrophins were used to induce ovulation. Serum leptin concentration was diminished 4 h after human chorionic gonadotrophin (hCG) administration, whereas the ovarian expression of leptin receptors, measured by western blot, was increased by the gonadotrophin treatment. Serum progesterone level, ovulation rate and ovarian prostaglandin E (PGE) content were reduced in rats primed with equine chorionic gonadotrophin (eCG)/hCG and treated with acute doses of leptin (five doses of 5 μg each). These inhibitory effects were confirmed by in vitro studies, where the presence of leptin reduced the concentrations of progesterone, PGE and nitrites in the media of both ovarian explants and preovulatory follicle cultures. We also investigated whether these negative effects were mediated by changes in the expression of the ovarian leptin receptors. Since leptin treatment did not alter the expression of ovarian leptin receptor, the inhibitory effect of leptin on the ovulatory process may not be mediated by changes in the expression of its receptors at ovarian level, at least at the concentrations assayed. In summary, the ovulatory process was significantly inhibited in response to an acute treatment with leptin, and this effect may be due, at least in part, to the direct or indirect impairment of some ovarian factors, such as prostaglandins and nitric oxide.


2006 ◽  
Vol 290 (6) ◽  
pp. E1253-E1261 ◽  
Author(s):  
Rong-Ze Yang ◽  
Mi-Jeong Lee ◽  
Hong Hu ◽  
Jessica Pray ◽  
Hai-Bin Wu ◽  
...  

Central (visceral) obesity is more closely associated with insulin resistance, type 2 diabetes, and cardiovascular disease than is peripheral [subcutaneous (sc)] obesity, but the underlying mechanism for this pathophysiological difference is largely unknown. To understand the molecular basis of this difference, we sequenced 10,437 expressed sequence tags (ESTs) from a human omental fat cDNA library and discovered a novel visceral fat depot-specific secretory protein, which we have named omentin. Omentin ESTs were more abundant than many known adipose genes, such as perilipin, adiponectin, and leptin in the cDNA library. Protein sequence analysis indicated that omentin mRNA encodes a peptide of 313 amino acids, containing a secretory signal sequence and a fibrinogen-related domain. Northern analysis demonstrated that omentin mRNA was predominantly expressed in visceral adipose tissue and was barely detectable in sc fat depots in humans and rhesus monkeys. Quantative real-time PCR showed that omentin mRNA was expressed in stromal vascular cells, but not fat cells, isolated from omental adipose tissue, with >150-fold less in sc cell fractions. Accordingly, omentin protein was secreted into the culture medium of omental, but not sc, fat explants. Omentin was detectable in human serum by Western blot analysis. Addition of recombinant omentin in vitro did not affect basal but enhanced insulin-stimulated glucose uptake in both sc (47%, n = 9, P = 0.003) and omental (∼30%, n = 3, P < 0.05) human adipocytes. Omentin increased Akt phosphorylation in the absence and presence of insulin. In conclusion, omentin is a new adipokine that is expressed in omental adipose tissue in humans and may regulate insulin action.


2002 ◽  
Vol 172 (3) ◽  
pp. 595-604 ◽  
Author(s):  
ED Bruder ◽  
AK Nagler ◽  
H Raff

The control of ACTH-stimulated steroidogenesis under decreasing levels of O(2) is not fully understood. The purpose of this study was to examine the effects of decreased O(2) in vitro on rat adrenocortical steroid synthesis at different stages of development. Of interest was the evaluation of the effect of low O(2) on steroidogenesis during the stress hyporesponsive period of the neonate. Rats were killed at 7, 14, or 42 days of age, adrenals collected and capsules (zona glomerulosa, ZG) separated from subcapsules (zona fasciculata/reticularis, ZFR). Cells were dispersed and placed into glass vials each gassed with a different level of O(2) (21, 5, 2, 1, or 0% O(2)). The entire steroidogenic pathway was analyzed by measuring ACTH-stimulated cAMP, corticosterone and aldosterone production during a 2 h incubation. In addition, the early (P450 scc) and late (P450c11 beta and P450 aldo) pathway activities were examined in the presence of cyanoketone. The PO(2) for half-maximal activity (P(50)) for aldosterone synthesis in ZG cells from 7- and 42-day-old rats was approximately 28 mmHg and 7 mmHg respectively, indicating that cells from older rats were more resistant to inhibition by low O(2). The P(50) for cAMP production from the ZG was approximately 14 mmHg for both age groups. The P(50) for corticosterone synthesis was approximately 28 mmHg and <7 mmHg in ZFR cells from 7- and 42-day-old cells respectively. The only enzyme activities affected by low O(2) (<35 mmHg) were P450 aldo and P450 scc. Moderate decreases in O(2) (from approximately 150 mmHg) decreased aldosteronogenesis, possibly due to observed decreases in cAMP generation, but not due to decreases in steroidogenic enzyme activity (7-day-old). Severe decreases in O(2) presumably inhibited P450 aldo through a direct effect on enzyme activity (both ages). P450 scc activity (including cholesterol transport) also seems to be decreased by very low O(2) (7-day-old). These findings illustrate a novel developmental alteration in O(2)-regulated steroid production, and may have implications for neonatal health and disease.


1990 ◽  
Vol 125 (2) ◽  
pp. 287-292 ◽  
Author(s):  
T. Tominaga ◽  
J. Fukata ◽  
Y. Naito ◽  
Y. Nakai ◽  
S. Funakoshi ◽  
...  

ABSTRACT We have examined the mechanism by which corticostatin-I (CS-I) acts to attenuate ACTH-induced steroidogenesis in rat adrenal cells. CS-I inhibited ACTH-induced corticosterone production in a dosedependent manner, without any effects on the basal corticosterone level in adrenal cells. When the cells were stimulated by 100 pg ACTH/ml, the minimum effective concentration of CS-I was 100 ng/ml, and 0.3–1.0 μg CS-I/ml produced a 50% reduction of the stimulated corticosterone production. The inhibitory effect of CS-I on ACTH-stimulated corticosterone production became apparent within 15 min of incubation, and the effect was reversed quickly by the removal of CS-I from the media. CS-I had no effect on angiotensin II-stimulated aldosterone production by adrenal zona glomerulosa cells. CS-I also did not affect cyclic AMP- or forskolin-stimulated corticosterone production. In an in-vitro binding study using 125I-labelled CS-I, CS-I showed considerable specific binding to rat adrenal cells, and the binding competed with ACTH in a dose-dependent manner. These experiments suggest that CS-I competes with ACTH on their binding sites and exerts an inhibitory effect on the adrenal cells. Journal of Endocrinology (1990) 125, 287–292


2006 ◽  
Vol 290 (6) ◽  
pp. R1557-R1564 ◽  
Author(s):  
Blair Wagoner ◽  
Dorothy B. Hausman ◽  
Ruth B. S. Harris

Leptin has been shown to reduce body fat in vivo. Adipocytes express the leptin receptor; therefore, it is realistic to expect a direct effect of leptin on adipocyte growth and metabolism. In vitro studies examining the effect of leptin on adipocyte metabolism require supraphysiological doses of the protein to see a decrease in lipogenesis or stimulation of lipolysis, implying an indirect action of leptin. It also is possible that leptin reduces adipose mass by inhibiting preadipocyte proliferation (increase in cell number) and/or differentiation (lipid filling). Thus we determined direct and indirect effects of leptin on preadipocyte proliferation and differentiation in vitro. We tested the effect of leptin (0–500 ng/ml), serum from leptin-infused rats (0.25% by volume), and adipose tissue-conditioned medium from leptin-infused rats (0–30% by volume) on preadipocyte proliferation and differentiation in a primary culture of cells from male Sprague-Dawley rat adipose tissue. Leptin (50 ng/ml) stimulated proliferation of preadipocytes ( P < 0.05), but 250 and 500 ng leptin/ml inhibited proliferation of both preadipocyte and stromal vascular cell fractions ( P < 0.01), as measured by [3H]thymidine incorporation. Serum from leptin-infused rats inhibited proliferation of the adipose and stromal vascular fractions ( P = 0.01), but adipose tissue-conditioned medium had no effect on proliferation of either cell fraction. None of the treatments changed preadipocyte differentiation as measured by sn-glycerophosphate dehydrogenase activity. These results suggest that leptin could inhibit preadipocyte proliferation by modifying release of a factor from tissue other than adipose tissue.


Sign in / Sign up

Export Citation Format

Share Document