Abstract P140: Mutant Mice Carrying Global Loss Of
Npr1
Exhibit Cardiac Fibrosis, Hypertrophy, And Congestive Heart Failure: Implication Of TGF-Beta/SMAD Signaling Pathway
The cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) bind to natriuretic peptide receptor-A (NPRA), which synthesizes the second messenger cGMP. The objective of this study was to determine the underlying mechanisms that regulate the development of cardiac hypertrophy, fibrosis, and congestive heart failure (CHF) in Npr1 (encoding NPRA) gene-knockout mice. The Npr1 null mutant ( Npr1 -/- , 0-copy), heterozygous ( Npr1 +/- , 1-copy), and wild-type ( Npr1 +/+ , 2-copy) mice were orally administered with transforming growth factor-β1 receptor I (TGF-β1R1) antagonist, GW788388 (2 mg/kg/day) by oral gavage for 28 days. The left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic dimension (LVEDS), posterior wall thickness (PWT), and percent fractional shortening (FS) were analyzed by echocardiography. The heart was isolated and used for the analysis of fibrotic markers using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot methods. The heart weight-to-body weight (HW/BW) ratio, LVEDD, LVEDS and PWT were significantly (p<0.005) increased in Npr1 -/- and Npr1 +/- mice than wild-type Npr1 +/+ mice. The FS was greatly reduced in Npr1 -/- and Npr1 +/- mice compared with Npr1 +/+ mice. The Npr1 -/- null mutant (0-copy) mice showed 52% increase in HW/BW ratio and 6-fold induction of cardiac fibrosis as compared with 2-copy control mice. The cardiac expression of fibrotic markers including collagen-1a (COL-1a; 3.5-fold), connective tissue growth factor (CTGF; 5-fold), α-smooth muscle actin (α-SMA; 4-fold), TGF-β1RI (4-fold), TGF-β1RII (3.5-fold), and SMAD-2/3 proteins (3-to-5 fold) were significantly increased in Npr1 -/- and Npr1 +/- mutant mice compared with age-matched Npr1 +/+ animals. The treatment with TGF-β1R1 antagonist, significantly (p<0.001) prevented the cardiac hypertrophy, fibrosis, CHF, and down-regulated the expression of fibrotic markers and SMAD proteins in mutant mice. The LVEDD, LVEDS, and FS were significantly (p<0.001) improved in the drug treated Npr1 -/- mice. The present results indicate that the cardiac hypertrophy, fibrosis, and CHF in Npr1 mutant mice is regulated through the TGF-β1-mediated SMAD-dependent signaling pathway.