Abstract 31: Regulation of Acetylation Restores Proteolytic Function in Diseased Myocardium

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Ding Wang ◽  
Caiyun Fang ◽  
Nobel Zong ◽  
Tae-Young Kim ◽  
David Liem ◽  
...  

RATIONALE: Proteasome complexes play essential roles in maintaining cardiac protein homeostasis in normal and stressed conditions. However, proteasomal function is often compromised in diseased myocardium; and the regulation of proteasomal dynamics remains poorly understood. METHODS AND RESULTS: We studied cardiac proteolytic function and its regulation by acetylation in murine and human models of heart disease. Proteasomes, from both normal and diseased myocardium, were treated with histone de-acetylases (HDACs) inhibitors and they exhibited enhanced proteolytic capacity in vitro and in vivo. This unique regulatory paradigm was first examined in a murine model of ischemic injury (n=5); where diminished proteolytic function in the ischemic hearts was restored by HDACs inhibition (either by SAHA or by Sodium Valproate) in a dose-dependent fashion. Importantly, this phenomenon was validated in human samples, where inhibition of HDACs augmented proteolytic functions in the diseased myocardium (n=5). Using high resolution LC-MS/MS coupled with a combined collision-induced dissociation and electron-transfer dissociation approach, the acetylome (N-terminal and lysine) of cardiac 20S proteasomes was delineated. Targeted enrichment strategy of the posttranslationally modified peptides enabled the capture of eight lysine and nine N-terminal acetylation sites in the murine heart, contributing to the first comprehensive acetylome map for the cardiac 20S proteasomes. Among them, at least six lysine acetylation sites were inducible by HDACs inhibitors. Furthermore, parallel investigations using cardiac 20S proteasomes pinpointed the functional impact of HDAC inhibitions to specific acetylation sites on the 20S proteasomal subunits. CONCLUSIONS: Proteasomal biology is modulated by acetylation modifications in the heart. This regulatory mechanism is punctual and potent; and it was observed both in an acutely pathological murine model of ischemia-reperfusion injury as well as in a chronic human disease of end-stage heart failure. These findings demonstrate the utility of pharmacological interventions (e.g., HDAC inhibition) to restore damaged proteolytic function in diseased myocardium.

2017 ◽  
Vol 95 (4) ◽  
pp. 459-467 ◽  
Author(s):  
Junhong Guan ◽  
Xiangtai Wei ◽  
Shengtao Qu ◽  
Tao Lv ◽  
Qiang Fu ◽  
...  

Stroke is a common cerebrovascular disease in aging populations, and constitutes the second highest principle cause of mortality and the principle cause of permanent disability, and ischemic stroke is the primary form. Osthole is a coumarin derivative extracted from the fruits of Cnidium monnieri (L.) Cusson. In this study, we established a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) in vivo and found that MCAO/R caused cerebral infarction, hippocampus neuronal injury and apoptosis, and also activated the Notch 1 signaling pathway. However, treatment with osthole further enhanced the activity of Notch 1 signaling and reduced the cerebral infarction as well as the hippocampus neuronal injury and apoptosis induced by MCAO/R in a dose-dependent manner. The same results were observed in a primary neuronal oxygen glucose deficiency/reperfusion (OGD/R) model in vitro, and the effect of osthole could be blocked by an inhibitor of Notch 1 signaling, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine tert-butyl ester (DAPT). Therefore, we demonstrated that osthole injection prevented rat ischemia–reperfusion injury via activating the Notch 1 signaling pathway in vivo and in vitro in a dose-dependent manner, which may be significant for clinical treatment of ischemic stroke.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qi Li ◽  
Mengping Xu ◽  
Zhuqing Li ◽  
Tingting Li ◽  
Yilin Wang ◽  
...  

Aims: The inflammatory response and apoptosis are the major pathological features of myocardial ischemia/reperfusion injury (MI/RI). Maslinic acid (MA), a natural pentacyclic triterpene with various bioactivities, plays critical roles in the multiple cellular biological processes, but its protective effects on the pathophysiological processes of MI/RI have not been extensively investigated. Our study aimed to determine whether MA treatment alleviate ischemia/reperfusion (I/R)-induced myocardial inflammation and apoptosis both in vitro and in vivo, and further reveal the underlying mechanisms.Methods and results: An MI/RI rat model was successfully established by ligating the left anterior descending coronary artery and H9c2 cells were exposed to hypoxia/reoxygenation (H/R) to mimic I/R injury. In addition, prior to H/R stimulation or myocardial I/R operation, the H9c2 cells or rats were treated with varying concentrations of MA or vehicle for 24 h and two consecutive days, respectively. In this study, our results showed that MA could obviously increase the cell viability and decrease the cardiac enzymes release after H/R in vitro. MA could significantly improve the H/R-induced cardiomyocyte injury and I/R-induced myocardial injury in a dose-dependent manner. Moreover, MA suppressed the expression of inflammatory cytokines (tumor necrosis factor alpha [TNF-α, interleukin-1β [IL-1β and interleukin-6 [IL-6]) and the expressions of apoptosis-related proteins (cleaved caspase-3 and Bax) as well as increased the levels of anti-apoptotic protein Bcl-2 expression both in vitro and in vivo. Mechanistically, MA significantly inhibited nuclear translocation of nuclear factor-κB (NF-κB) p65 after H/R via regulating high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4) axis.Conclusion: Taken together, MA treatment may alleviate MI/RI by suppressing both the inflammation and apoptosis in a dose-dependent manner, and the cardioprotective effect of MA may be partly attributable to the inactivation of HMGB1/TLR4/NF-κB pathway, which offers a new therapeutic strategy for MI/RI.


1995 ◽  
Vol 73 (05) ◽  
pp. 805-811 ◽  
Author(s):  
Yasuo Takahashi ◽  
Yoshitaka Hosaka ◽  
Hiromi Niina ◽  
Katsuaki Nagasawa ◽  
Masaaki Naotsuka ◽  
...  

SummaryWe examined the anticoagulant activity of two major molecules of soluble thrombomodulin purified from human urine. The apparent molecular weights of these urinary thrombomodulins (UTMs) were 72,000 and 79,000, respectively. Both UTMs showed more potent cofactor activity for protein C activation [specific activity >5,000 thrombomodulin units (TMU)/mg] than human placental thrombomodulin (2,180 TMU/mg) and rabbit lung thrombomodulin (1,980 TMU/mg). The UTMs prolonged thrombin-induced fibrinogen clotting time (>1 TMU/ml), APTT (>5 TMU/ml), TT (>5 TMU/ml) and PT (>40 TMU/ml) in a dose-dependent fashion. These effects appeared in the concentration range of soluble thrombomodulins present in human plasma and urine. In the rat DIC model induced by thromboplastin, administration of UTMs by infusion (300-3,000 TMU/kg) restored the hematological abnormalities derived from DIC in a dose-dependent fashion. These results demonstrate that UTMs exhibit potent anticoagulant and antithrombotic activities, and could play a physiologically important role in microcirculation.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Ying Dong Du ◽  
Wen Yuan Guo ◽  
Cong Hui Han ◽  
Ying Wang ◽  
Xiao Song Chen ◽  
...  

AbstractDespite N6-methyladenosine (m6A) is functionally important in various biological processes, its role and the underlying regulatory mechanism in the liver remain largely unexplored. In the present study, we showed that fat mass and obesity-associated protein (FTO, an m6A demethylase) was involved in mitochondrial function during hepatic ischemia–reperfusion injury (HIRI). We found that the expression of m6A demethylase FTO was decreased during HIRI. In contrast, the level of m6A methylated RNA was enhanced. Adeno-associated virus-mediated liver-specific overexpression of FTO (AAV8-TBG-FTO) ameliorated the HIRI, repressed the elevated level of m6A methylated RNA, and alleviated liver oxidative stress and mitochondrial fragmentation in vivo and in vitro. Moreover, dynamin-related protein 1 (Drp1) was a downstream target of FTO in the progression of HIRI. FTO contributed to the hepatic protective effect via demethylating the mRNA of Drp1 and impairing the Drp1-mediated mitochondrial fragmentation. Collectively, our findings demonstrated the functional importance of FTO-dependent hepatic m6A methylation during HIRI and provided valuable insights into the therapeutic mechanisms of FTO.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


Human Cell ◽  
2021 ◽  
Author(s):  
Jiaying Zhu ◽  
Zhu Zhu ◽  
Yipin Ren ◽  
Yukang Dong ◽  
Yaqi Li ◽  
...  

AbstractLINGO-1 may be involved in the pathogenesis of cerebral ischemia. However, its biological function and underlying molecular mechanism in cerebral ischemia remain to be further defined. In our study, middle cerebral artery occlusion/reperfusion (MACO/R) mice model and HT22 cell oxygen–glucose deprivation/reperfusion (OGD/R) were established to simulate the pathological process of cerebral ischemia in vivo and in vitro and to detect the relevant mechanism. We found that LINGO-1 mRNA and protein were upregulated in mice and cell models. Down-regulation LINGO-1 improved the neurological symptoms and reduced pathological changes and the infarct size of the mice after MACO/R. In addition, LINGO-1 interference alleviated apoptosis and promoted cell proliferation in HT22 of OGD/R. Moreover, down-regulation of LINGO-1 proved to inhibit nuclear translocation of p-NF-κB and reduce the expression level of p-JAK2 and p-STAT3. In conclusion, our data suggest that shLINGO-1 attenuated ischemic injury by negatively regulating NF-KB and JAK2/STAT3 pathways, highlighting a novel therapeutic target for ischemic stroke.


2021 ◽  
Vol 22 (5) ◽  
pp. 2727
Author(s):  
Gertrude J. Nieuwenhuijs-Moeke ◽  
Dirk J. Bosch ◽  
Henri G.D. Leuvenink

Ischemia reperfusion injury (IRI) is inevitable in kidney transplantation and negatively impacts graft and patient outcome. Reperfusion takes place in the recipient and most of the injury following ischemia and reperfusion occurs during this reperfusion phase; therefore, the intra-operative period seems an attractive window of opportunity to modulate IRI and improve short- and potentially long-term graft outcome. Commonly used volatile anesthetics such as sevoflurane and isoflurane have been shown to interfere with many of the pathophysiological processes involved in the injurious cascade of IRI. Therefore, volatile anesthetic (VA) agents might be the preferred anesthetics used during the transplantation procedure. This review highlights the molecular and cellular protective points of engagement of VA shown in in vitro studies and in vivo animal experiments, and the potential translation of these results to the clinical setting of kidney transplantation.


2018 ◽  
Vol 102 ◽  
pp. S708
Author(s):  
Ivan Linares ◽  
Agata Bartczak ◽  
Kaveh Farrokhi ◽  
Dagmar Kollmann ◽  
Moritz Kaths ◽  
...  

2011 ◽  
Vol 32 (2) ◽  
pp. 242-247 ◽  
Author(s):  
Amy E B Packard ◽  
Jason C Hedges ◽  
Frances R Bahjat ◽  
Susan L Stevens ◽  
Michael J Conlin ◽  
...  

Preconditioning induces ischemic tolerance, which confers robust protection against ischemic damage. We show marked protection with polyinosinic polycytidylic acid (poly-IC) preconditioning in three models of murine ischemia-reperfusion injury. Poly-IC preconditioning induced protection against ischemia modeled in vitro in brain cortical cells and in vivo in models of brain ischemia and renal ischemia. Further, unlike other Toll-like receptor (TLR) ligands, which generally induce significant inflammatory responses, poly-IC elicits only modest systemic inflammation. Results show that poly-IC is a new powerful prophylactic treatment that offers promise as a clinical therapeutic strategy to minimize damage in patient populations at risk of ischemic injury.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Riham Abouleisa ◽  
Qinghui Ou ◽  
Xian-liang Tang ◽  
Mitesh Solanki ◽  
Yiru Guo ◽  
...  

Rationale: The regenerative capacity of the heart to repair itself after myocardial infarction (MI)is limited. Our previous study showed that ectopic introduction of Cdk1/CyclinB1 andCdk4/CyclinD1 complexes (4F) promotes cardiomyocyte proliferation in vitro and in vivo andimproves cardiac function after MI. However, its clinical application is limited due to the concernsfor tumorigenic potential in other organs. Objectives: To first, identify on a single cell transcriptomic basis the necessary reprogrammingsteps that cardiomyocytes need to undertake to progress through the proliferation processfollowing 4F overexpression, and then, to determine the pre-clinical efficacy of transient andcardiomyocyte specific expression of 4F in improving cardiac function after MI in small and largeanimals. Methods and Results: Temporal bulk and single cell RNAseq of mature hiPS-CMs treated with4F or LacZ control for 24, 48, or 72 h revealed full cell cycle reprogramming in 15% of thecardiomyocyte population which was associated with sarcomere disassembly and metabolicreprogramming. Transient overexpression of 4F specifically in cardiomyocytes was achievedusing non-integrating lentivirus (NIL) driven by TNNT2 (TNNT2-4F-NIL). One week after inductionof ischemia-reperfusion injury in rats or pigs, TNNT2-4F-NIL or control virus was injectedintramyocardially. Compared with controls, rats or pigs treated with TNNT2-4F-NIL showed a 20-30% significant improvement in ejection fraction and scar size four weeks after treatment, asassessed by echocardiography and histological analysis. Quantification of cardiomyocyteproliferation in pigs using a novel cytokinesis reporter showed that ~10% of the cardiomyocyteswithin the injection site were labelled as daughter cells following injection with TNNT2-4F-NILcompared with ~0.5% background labelling in control groups. Conclusions: We provide the first understanding of the process of forced cardiomyocyteproliferation and advanced the clinical applicability of this approach through minimization ofoncogenic potential of the cell cycle factors using a novel transient and cardiomyocyte-specificviral construct.


Sign in / Sign up

Export Citation Format

Share Document