Abstract 80: Accumulation of Mitochondrial DNA in Autolysosome Causes Inflammation and Heart Failure Through Toll-Like Receptor 9 (TLR9) Signaling

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Takafumi Oka ◽  
Osamu Yamaguchi ◽  
Issei Komuro ◽  
Kinya Otsu

Backgrounds Nuclear DNA in apoptotic cell is digested by lysosomal deoxyribonuclease II (DNase II) in macrophages. Improper DNA digestion can lead to inflammation. We previously reported that cardiac-specific DNase II-deficient mice (CKO) exhibited heart failure after transverse aortic constriction (TAC). We observed inflammatory response and DNA accumulation in autolysosome in TAC-operated CKO heart. They were considered to be mitochondrial DNA (mtDNA). In present study, we elucidated the mechanism of inflammation integrated by DNA accumulation in TAC-operated CKO hearts. Furthermore we investigated the pathogenesis of inflammation and heart failure in wild-typeTAC-operated mice. Methods & Results First, we identified the origin of accumulated DNA in lysosome. To label cardiac mtDNA, EdU (5-ethynyl 2’ deoxyuridine) were injected into mice before TAC. In TAC-operated CKO mice, EdU- and LAMP2a (lysosomal marker) or LC3 (autophagosome marker) positive deposits were observed, indicating that mtDNA accumulated in autolysosome. Then, we examined the mechanism how the mtDNA accumulation leads to inflammation. mtDNA has similarities to bacterial DNA, which contains inflammatogenic unmethylated CpG motif. TLR9, localized in the endolysosome, senses DNA with unmethylated CpG motifs. Therefore, we hypothesized that undigested mtDNA is sensed by TLR9. We administrated the inhibitory oligodeoxynucleotides against TLR9 to TAC-operated CKO mice. They attenuated the development of cardiomyopathy in CKO mice. Ablation of Tlr9 also canceled the cardiac phenotype of CKO mice. Next, we examined the involvement of DNA accumulation and TLR9 signaling in wild-type TAC-operated mice. DNase II activity was up-regulated in hypertrophied hearts, but not in failing hearts. LAMP2a- or LC3- positive DNA accumulation was observed in failing hearts. To determine the significance of TLR9 signaling pathway in the pathogenesis of heart failure, we subjected TLR9-deficient mice to TAC. They showed significant resistance to pressure-overload. TLR9-inhibitory oligodeoxynucleotides also improved the mortality in wild-type TAC-operated mice. Conclusion mtDNA-TLR9 axis is involved in inflammation in failing hearts in response to pressure overload.

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Pappu Ananya ◽  
Michael Binder ◽  
Yang Wanjun ◽  
Rebecca McClellan ◽  
Brittney Murray ◽  
...  

Introduction: Mitochondrial heart disease due to pathogenic mitochondrial DNA (mtDNA) mutations can present as hypertrophic or dilated cardiomyopathy, ventricular arrhythmias and conduction disease. It is estimated that the mutation rate of mtDNA is 10 to 20-fold higher than that of nuclear DNA genes due to damage from reactive oxygen species released as byproducts during oxidative phosphorylation. When a new mtDNA mutation arises, it creates an intracellular heteroplasmic mixture of mutant and normal mtDNAs, called heteroplasmy. Heteroplasmy levels can vary in various tissues and examining mtDNA variants in blood may not be representative for the heart. The frequency of pathogenic mtDNA variants in myocardial tissues in unknown. Hypothesis: Human ventricular tissue may contain mtDNA mutations which can lead to alterations in mitochondrial function and increase individual risk for heart failure. Methods: Mitochondrial DNA was isolated from 61 left ventricular myocardial samples obtained from failing human hearts at the time of transplantation. mtDNA was sequenced with 23 primer pairs. In silico prediction of non-conservative missense variants was performed via PolyPhen-2. Heteroplasmy levels of variants predicted to be pathogenic were quantified using allele-specific ARMS-PCR. Results: We identified 21 mtDNA non-synonymous variants predicted to be pathogenic in 17 hearts. Notably, one heart contained four pathogenic mtDNA variants (ATP6: p.M104; ND5: p.P265S; ND4: p.N390S and p.L445F). Heteroplasmy levels exceeded 90% for all four variants in myocardial tissue and were significantly lower in blood. No pathogenic mtDNA variants were identified in 44 hearts. Hearts with mtDNA mutations had higher levels of myocardial GDF-15 (growth differentiation factor-15; 6.2±2.3 vs. 1.3±0.18, p=0.045), an established serum biomarker in various mitochondrial diseases. Conclusions: Non-synonymous mtDNA variants predicted to be pathogenic are common in human left ventricular tissue and may be an important modifier of the heart failure phenotype. Future studies are necessary to correlate myocardial mtDNA mutations with cardiovascular outcomes and to assess whether serum GDF-15 allows identifying patients with myocardial mtDNA mutations.


Author(s):  
Mortimer Korf-Klingebiel ◽  
Marc R. Reboll ◽  
Felix Polten ◽  
Natalie Weber ◽  
Felix Jäckle ◽  
...  

Background: Inflammation contributes to the pathogenesis of heart failure, but there is limited understanding of inflammation's potential benefits. Inflammatory cells secrete myeloid-derived growth factor (MYDGF) to promote tissue repair after acute myocardial infarction. We hypothesized that MYDGF has a role in cardiac adaptation to persistent pressure overload. Methods: We defined the cellular sources and function of MYDGF in wild-type, Mydgf -deficient ( Mydgf -/- ), and Mydgf bone marrow-chimeric or bone marrow-conditional transgenic mice with pressure overload-induced heart failure after transverse aortic constriction surgery. We measured MYDGF plasma concentrations by targeted liquid chromatography-mass spectrometry. We identified MYDGF signaling targets by phosphoproteomics and substrate-based kinase activity inference. We recorded Ca 2+ transients and sarcomere contractions in isolated cardiomyocytes. Additionally, we explored the therapeutic potential of recombinant MYDGF. Results: MYDGF protein abundance increased in the left ventricular (LV) myocardium and in blood plasma of pressure-overloaded mice. Patients with severe aortic stenosis also had elevated MYDGF plasma concentrations, which declined after transcatheter aortic valve implantation. Monocytes and macrophages emerged as the main MYDGF sources in the pressure-overloaded murine heart. While Mydgf -/- mice had no apparent phenotype at baseline, they developed more severe LV hypertrophy and contractile dysfunction during pressure overload than wild-type mice. Conversely, conditional transgenic overexpression of MYDGF in bone marrow-derived inflammatory cells attenuated pressure overload-induced hypertrophy and dysfunction. Mechanistically, MYDGF inhibited G protein coupled receptor agonist-induced hypertrophy and augmented sarco/endoplasmic reticulum Ca 2+ ATPase 2a (SERCA2a) expression in cultured neonatal rat cardiomyocytes by enhancing PIM1 serine/threonine kinase expression and activity. Along this line, cardiomyocytes from pressure-overloaded Mydgf -/- mice displayed reduced PIM1 and SERCA2a expression, greater hypertrophy, and impaired Ca 2+ cycling and sarcomere function compared to cardiomyocytes from pressure-overloaded wild-type mice. Transplanting Mydgf -/- mice with wild-type bone marrow cells augmented cardiac PIM1 and SERCA2a levels and ameliorated pressure overload-induced hypertrophy and dysfunction. Pressure-overloaded Mydgf -/- mice were similarly rescued by adenoviral Serca2a gene transfer. Treating pressure-overloaded wild-type mice subcutaneously with recombinant MYDGF enhanced SERCA2a expression, attenuated LV hypertrophy and dysfunction, and improved survival. Conclusions: These findings establish a MYDGF-based adaptive crosstalk between inflammatory cells and cardiomyocytes that protects against pressure overload-induced heart failure.


2009 ◽  
Vol 296 (4) ◽  
pp. F867-F874 ◽  
Author(s):  
Julia Lichtnekert ◽  
Volker Vielhauer ◽  
Daniel Zecher ◽  
Onkar P. Kulkarni ◽  
Sebastian Clauss ◽  
...  

Viral RNA or bacterial products can activate glomerular mesangial cells via a subset of Toll-like receptors (Tlr). Because Tlr2-deficient mice were recently found to have attenuated nephrotoxic serum nephritis (NSN), we hypothesized that endogenous Tlr agonists can activate glomerular mesangial cells. Primary mesangial cells from C57BL/6 mice expressed Tlr1-6 and Tlr11 mRNA at considerable levels and produced Il-6 when being exposed to the respective Tlr ligands. Exposure to necrotic cells activated cultured primary mesangial cells to produce Il-6 in a Tlr2/Myd88-dependent manner. Apoptotic cells activated cultured mesangial cells only when being enriched to high numbers. Apoptotic cell-induced Il-6 release was Myd88 dependent, and only purified apoptotic cell RNA induced Trif signaling in mesangial cells. Does Trif signaling contribute to disease activity in glomerulonephritis? To answer this question, we induced autologous NSN by injection of NS raised in rabbits in Trif-mutant and wild-type mice. Lack of Trif did not alter the functional and histomorphological abnormalities of NSN, including the evolution of anti-rabbit IgG and anti-rabbit-specific nephritogenic T cells. We therefore conclude that apoptotic cell RNA is a poor activator of Trif signaling in mesangial cells and that necrotic cells' releases rather activate mesangial cells via the Tlr2/Myd88 signaling pathway.


2019 ◽  
Vol 317 (6) ◽  
pp. L740-L747 ◽  
Author(s):  
Jegen Kandasamy ◽  
Gabriel Rezonzew ◽  
Tamas Jilling ◽  
Scott Ballinger ◽  
Namasivayam Ambalavanan

Hyperoxia-induced oxidant stress contributes to the pathogenesis of bronchopulmonary dysplasia (BPD) in preterm infants. Mitochondrial functional differences due to mitochondrial DNA (mtDNA) variations are important modifiers of oxidant stress responses. The objective of this study was to determine whether mtDNA variation independently modifies lung development and mechanical dysfunction in newborn mice exposed to hyperoxia. Newborn C57BL6 wild type (C57n/C57mt, C57WT) and C3H/HeN wild type (C3Hn/C3Hmt, C3HWT) mice and novel Mitochondrial-nuclear eXchange (MNX) strains with nuclear DNA (nDNA) from their parent strain and mtDNA from the other—C57MNX (C57n/C3Hmt) and C3HMNX (C3Hn/C57mt)—were exposed to 21% or 85% O2 from birth to postnatal day 14 (P14). Lung mechanics and histopathology were examined on P15. Neonatal mouse lung fibroblast (NMLF) bioenergetics and mitochondrial superoxide (O2−) generation were measured. Pulmonary resistance and mitochondrial O2− generation were increased while alveolarization, compliance, and NMLF basal and maximal oxygen consumption rate were decreased in hyperoxia-exposed C57WT mice (C57n/C57mt) versus C57MNX mice (C57n/C3Hmt) and in hyperoxia-exposed C3HMNX mice (C3Hn/C57mt) versus C3HWT (C3Hn/C3Hmt) mice. Our study suggests that neonatal C57 mtDNA-carrying strains have increased hyperoxia-induced hypoalveolarization, pulmonary mechanical dysfunction, and mitochondrial bioenergetic and redox dysfunction versus C3H mtDNA strains. Therefore, mtDNA haplogroup variation-induced differences in mitochondrial function could modify neonatal alveolar development and BPD susceptibility.


2016 ◽  
Vol 311 (6) ◽  
pp. H1485-H1497 ◽  
Author(s):  
Shigemiki Omiya ◽  
Yosuke Omori ◽  
Manabu Taneike ◽  
Andrea Protti ◽  
Osamu Yamaguchi ◽  
...  

We have reported that the Toll-like receptor 9 (TLR9) signaling pathway plays an important role in the development of pressure overload-induced inflammatory responses and heart failure. However, its role in cardiac remodeling after myocardial infarction has not been elucidated. TLR9-deficient and control C57Bl/6 wild-type mice were subjected to left coronary artery ligation. The survival rate 14 days postoperation was significantly lower in TLR9-deficient mice than that in wild-type mice with evidence of cardiac rupture in all dead mice. Cardiac magnetic resonance imaging showed no difference in infarct size and left ventricular wall thickness and function between TLR9-deficient and wild-type mice. There were no differences in the number of infiltrating inflammatory cells and the levels of inflammatory cytokine mRNA in infarct hearts between TLR9-deficient and wild-type mice. The number of α-smooth muscle actin (αSMA)-positive myofibroblasts and αSMA/Ki67-double-positive proliferative myofibroblasts was increased in the infarct and border areas in infarct hearts compared with those in sham-operated hearts in wild-type mice, but not in TLR9-deficient mice. The class B CpG oligonucleotide increased the phosphorylation level of NF-κB and the number of αSMA-positive and αSMA/Ki67-double-positive cells and these increases were attenuated by BAY1-7082, an NF-κB inhibitor, in cardiac fibroblasts isolated from wild-type hearts. The CpG oligonucleotide showed no effect on NF-κB activation or the number of αSMA-positive and αSMA/Ki67-double-positive cells in cardiac fibroblasts from TLR9-deficient hearts. Although the TLR9 signaling pathway is not involved in the acute inflammatory response in infarct hearts, it ameliorates cardiac rupture possibly by promoting proliferation and differentiation of cardiac fibroblasts. Listen to this article’s corresponding podcast @ http://ajpheart.podbean.com/e/tlr9-in-post-infarct-cardiac-rupture/ .


2004 ◽  
Vol 286 (3) ◽  
pp. H1146-H1153 ◽  
Author(s):  
Jo El J. Schultz ◽  
Betty J. Glascock ◽  
Sandra A. Witt ◽  
Michelle L. Nieman ◽  
Kalpana J. Nattamai ◽  
...  

We recently developed a mouse model with a single functional allele of Serca2 ( Serca2+/–) that shows impaired cardiac contractility and relaxation without overt heart disease. The goal of this study was to test the hypothesis that chronic reduction in sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2 levels in combination with an increased hemodynamic load will result in an accelerated pathway to heart failure. Age-matched wild-type and Serca2+/– mice were subjected to 10 wk of pressure overload via transverse aortic coarctation surgery. Cardiac hypertrophy and heart failure were assessed by echocardiography, gravimetry/histology, hemodynamics, and Western blotting analyses. Our results showed that ∼64% of coarcted Serca2+/– mice were in heart failure compared with 0% of coarcted wild-type mice ( P < 0.05). Overall, morbidity and mortality were greatly increased in Serca2+/– mice under pressure overload. Echocardiography assessment revealed a significant increase in left ventricular (LV) mass, and LV hypertrophy in coarcted Serca2+/– mice converted from a concentric to an eccentric pattern, similar to that seen in human heart failure. Coarcted Serca2+/– mice had decreased contractile/systolic and relaxation/diastolic performance and/or function compared with coarcted wild-type mice ( P < 0.05), despite a similar duration and degree of pressure overload. SERCA2a protein levels were significantly reduced (>50%) in coarcted Serca2+/– mice compared with noncoarcted and coarcted wild-type mice. Our findings suggest that reduction in SERCA2 levels in combination with an increased hemodynamic load results in an accelerated pathway to heart failure.


2009 ◽  
Vol 206 (7) ◽  
pp. 1565-1574 ◽  
Author(s):  
Yosuke Kayama ◽  
Tohru Minamino ◽  
Haruhiro Toko ◽  
Masaya Sakamoto ◽  
Ippei Shimizu ◽  
...  

To identify a novel target for the treatment of heart failure, we examined gene expression in the failing heart. Among the genes analyzed, Alox15 encoding the protein 12/15 lipoxygenase (LOX) was markedly up-regulated in heart failure. To determine whether increased expression of 12/15-LOX causes heart failure, we established transgenic mice that overexpressed 12/15-LOX in cardiomyocytes. Echocardiography showed that Alox15 transgenic mice developed systolic dysfunction. Cardiac fibrosis increased in Alox15 transgenic mice with advancing age and was associated with the infiltration of macrophages. Consistent with these observations, cardiac expression of monocyte chemoattractant protein 1 (MCP-1) was up-regulated in Alox15 transgenic mice compared with wild-type mice. Treatment with 12-hydroxy-eicosatetraenoic acid, a major metabolite of 12/15-LOX, increased MCP-1 expression in cardiac fibroblasts and endothelial cells but not in cardiomyocytes. Inhibition of MCP-1 reduced the infiltration of macrophages into the myocardium and prevented both systolic dysfunction and cardiac fibrosis in Alox15 transgenic mice. Likewise, disruption of 12/15-LOX significantly reduced cardiac MCP-1 expression and macrophage infiltration, thereby improving systolic dysfunction induced by chronic pressure overload. Our results suggest that cardiac 12/15-LOX is involved in the development of heart failure and that inhibition of 12/15-LOX could be a novel treatment for this condition.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Wenjia Li ◽  
Lei Yin ◽  
Xiaolei Sun ◽  
Jian Wu ◽  
Zhen Dong ◽  
...  

Abstract Alpha-lipoic acid (α-LA), a well-known antioxidant, was proved to active ALDH2 in nitrate tolerance and diabetic animal model. However, the therapeutic advantage of α-LA for heart failure and related signaling pathway have not been explored. This study was designed to examine the role of α-LA–ALDH2 in heart failure injury and mitochondrial damage. ALDH2 knockout (ALDH2−/−) mice and primary neonatal rat cardiomyocytes (NRCMs) were subjected to assessment of myocardial function and mitochondrial autophagy. Our data demonstrated α-LA significantly reduced the degree of TAC-induced LV hypertrophy and dysfunction in wild-type mice, not in ALDH2−/− mice. In molecular level, α-LA significantly restored ALDH2 activity and expression as well as increased the expression of a novel mitophagy receptor protein FUNDC1 in wild-type TAC mice. Besides, we confirmed that ALDH2 which was activated by α-LA governed the activation of Nrf1–FUNDC1 cascade. Our data suggest that α-LA played a positive role in protecting the heart against adverse effects of chronic pressure overload.


Circulation ◽  
2021 ◽  
Vol 143 (17) ◽  
pp. 1687-1703
Author(s):  
Priya Umapathi ◽  
Olurotimi O. Mesubi ◽  
Partha S. Banerjee ◽  
Neha Abrol ◽  
Qinchuan Wang ◽  
...  

Background: Heart failure is a leading cause of death worldwide and is associated with the rising prevalence of obesity, hypertension, and diabetes. O -GlcNAcylation (the attachment of O -linked β-N-acetylglucosamine [ O -GlcNAc] moieties to cytoplasmic, nuclear, and mitochondrial proteins) is a posttranslational modification of intracellular proteins and serves as a metabolic rheostat for cellular stress. Total levels of O -GlcNAcylation are determined by nutrient and metabolic flux, in addition to the net activity of 2 enzymes: O -GlcNAc transferase (OGT) and O -GlcNAcase (OGA). Failing myocardium is marked by increased O -GlcNAcylation, but whether excessive O -GlcNAcylation contributes to cardiomyopathy and heart failure is unknown. Methods: We developed 2 new transgenic mouse models with myocardial overexpression of OGT and OGA to control O -GlcNAcylation independent of pathologic stress. Results: We found that OGT transgenic hearts showed increased O -GlcNAcylation and developed severe dilated cardiomyopathy, ventricular arrhythmias, and premature death. In contrast, OGA transgenic hearts had lower O -GlcNAcylation but identical cardiac function to wild-type littermate controls. OGA transgenic hearts were resistant to pathologic stress induced by pressure overload with attenuated myocardial O -GlcNAcylation levels after stress and decreased pathologic hypertrophy compared with wild-type controls. Interbreeding OGT with OGA transgenic mice rescued cardiomyopathy and premature death, despite persistent elevation of myocardial OGT. Transcriptomic and functional studies revealed disrupted mitochondrial energetics with impairment of complex I activity in hearts from OGT transgenic mice. Complex I activity was rescued by OGA transgenic interbreeding, suggesting an important role for mitochondrial complex I in O -GlcNAc–mediated cardiac pathology. Conclusions: Our data provide evidence that excessive O -GlcNAcylation causes cardiomyopathy, at least in part, attributable to defective energetics. Enhanced OGA activity is well tolerated and attenuation of O -GlcNAcylation is beneficial against pressure overload–induced pathologic remodeling and heart failure. These findings suggest that attenuation of excessive O -GlcNAcylation may represent a novel therapeutic approach for cardiomyopathy.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yasuhiro Akazawa ◽  
Manabu Taneike ◽  
Hiromichi Ueda ◽  
Rika Kitazume-Taneike ◽  
Tomokazu Murakawa ◽  
...  

AbstractHeart failure has high morbidity and mortality in the developed countries. Autophagy is important for the quality control of proteins and organelles in the heart. Rubicon (Run domain Beclin-1-interacting and cysteine-rich domain-containing protein) has been identified as a potent negative regulator of autophagy and endolysosomal trafficking. The aim of this study was to investigate the in vivo role of Rubicon-mediated autophagy and endosomal trafficking in the heart. We generated cardiomyocyte-specific Rubicon-deficient mice and subjected the mice to pressure overload by means of transverse aortic constriction. Rubicon-deficient mice showed heart failure with left ventricular dilatation, systolic dysfunction and lung congestion one week after pressure overload. While autophagic activity was unchanged, the protein amount of beta-1 adrenergic receptor was decreased in the pressure-overloaded Rubicon-deficient hearts. The increases in heart rate and systolic function by beta-1 adrenergic stimulation were significantly attenuated in pressure-overloaded Rubicon-deficient hearts. In isolated rat neonatal cardiomyocytes, the downregulation of the receptor by beta-1 adrenergic agonist was accelerated by knockdown of Rubicon through the inhibition of recycling of the receptor. Taken together, Rubicon protects the heart from pressure overload. Rubicon maintains the intracellular recycling of beta-1 adrenergic receptor, which might contribute to its cardioprotective effect.


Sign in / Sign up

Export Citation Format

Share Document