Abstract 421: Activated Cardiac Myofibroblasts Can Revert Back to Become Resident Fibroblasts Upon Injury Cessation

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Onur Kanisicak ◽  
Jason Karch ◽  
Hadi Khalil ◽  
Bryan Maliken ◽  
Jeffery D Molkentin

Resident cardiac fibroblasts (CFs) are potential therapeutic targets in treating heart failure given the prominent role that fibrosis plays in this disorder. CFs directly convert to myofibroblasts (MFs) with injury where they mediate both adaptive wound healing after acute myocardial infarction as well as long-standing fibrosis during chronic disease states. However, the fate of activated MFs after injury recovery or when an infarction scar is stabilized remains poorly understood, in part because the field has lacked a definitive strategy for identifying and tracing MFs and CFs in vivo. To address this issue we recently generated a novel mouse model that permits lineage tracing of all MFs in the heart after injury or stress stimulation, which we used to address the fate of MFs after injury resolution. MFs were lineage traced with a tamoxifen inducible periostin allele knockin of the MerCreMer cDNA (PostnMCM), with a Rosa26-eGFP dependent reporter. PostnMCM x R26-eGFP mice were transiently injured with the combined infusion of angiotensin II and phenylephrine (Ang/PE) for 2 weeks, during which time tamoxifen was also given to trace all newly formed MFs. Mice were then allowed to “rest” for 2 weeks or longer with no Ang/PE as the fibrotic response regressed, and the fate of the eGFP + cells was assessed. The data show that immediately after 2 weeks of Ang/PE infusion nearly all the eGFP+ periostin lineage-traced myofibroblasts were αSMA positive and have an activated myofibroblast gene expression profile. However, when the fibrotic response regressed weeks later, a number of periostin-lineage traced eGFP+ cells were still present in the heart and these cells showed a phenotypic and molecular reversion back to CFs with a loss of myofibroblast marker genes. These results suggest that CFs are very unique cell types that can differentiate to MFs then back again to resident CFs.

2020 ◽  
Vol 21 (22) ◽  
pp. 8507
Author(s):  
Miles A. Tanner ◽  
Toby P. Thomas ◽  
Charles A. Maitz ◽  
Laurel A. Grisanti

Fibroblasts are an important resident cell population in the heart involved in maintaining homeostasis and structure during normal conditions. They are also crucial in disease states for sensing signals and initiating the appropriate repair responses to maintain the structural integrity of the heart. This sentinel role of cardiac fibroblasts occurs, in part, through their ability to secrete cytokines. β-adrenergic receptors (βAR) are also critical regulators of cardiac function in the normal and diseased state and a major therapeutic target clinically. βAR are known to influence cytokine secretion in various cell types and they have been shown to be involved in cytokine production in the heart, but their role in regulating cytokine production in cardiac fibroblasts is not well understood. Thus, we hypothesized that βAR activation on cardiac fibroblasts modulates cytokine production to influence fibroblast function. Using primary fibroblast cultures from neonatal rats and adult mice, increased interleukin (IL)-6 expression and secretion occurred following β2AR activation. The use of pharmacological inhibitors and genetic manipulations showed that IL-6 elevations occurred through the Gαs-mediated activation of ERK1/2 and resulted in increased fibroblast proliferation. In vivo, a lack of β2AR resulted in increased infarct size following myocardial infarction and impaired wound closure in a murine dermal wound healing assay. These findings identify an important role for β2AR in regulating fibroblast proliferation through Gαs/ERK1/2-dependent alterations in IL-6 and may lead to the development of improved heart failure therapies through targeting fibrotic function of β2AR.


Development ◽  
1999 ◽  
Vol 126 (18) ◽  
pp. 4005-4015 ◽  
Author(s):  
M. Weaver ◽  
J.M. Yingling ◽  
N.R. Dunn ◽  
S. Bellusci ◽  
B.L. Hogan

In the mature mouse lung, the proximal-distal (P-D) axis is delineated by two distinct epithelial subpopulations: the proximal bronchiolar epithelium and the distal respiratory epithelium. Little is known about the signaling molecules that pattern the lung along the P-D axis. One candidate is Bone Morphogenetic Protein 4 (Bmp4), which is expressed in a dynamic pattern in the epithelial cells in the tips of growing lung buds. Previous studies in which Bmp4 was overexpressed in the lung endoderm (Bellusci, S., Henderson, R., Winnier, G., Oikawa, T. and Hogan, B. L. M. (1996) Development 122, 1693–1702) suggested that this factor plays an important role in lung morphogenesis. To further investigate this question, two complementary approaches were utilized to inhibit Bmp signaling in vivo. The Bmp antagonist Xnoggin and, independently, a dominant negative Bmp receptor (dnAlk6), were overexpressed using the surfactant protein C (Sp-C) promoter/enhancer. Inhibiting Bmp signaling results in a severe reduction in distal epithelial cell types and a concurrent increase in proximal cell types, as indicated by morphology and expression of marker genes, including the proximally expressed hepatocyte nuclear factor/forkhead homologue 4 (Hfh4) and Clara cell marker CC10, and the distal marker Sp-C. In addition, electron microscopy demonstrates the presence of ciliated cells, a proximal cell type, in the most peripheral regions of the transgenic lungs. We propose a model in which Bmp4 is a component of an apical signaling center controlling P-D patterning. Endodermal cells at the periphery of the lung, which are exposed to high levels of Bmp4, maintain or adopt a distal character, while cells receiving little or no Bmp4 signal initiate a proximal differentiation program.


2018 ◽  
Vol 115 (52) ◽  
pp. E12245-E12254 ◽  
Author(s):  
Kai Kretzschmar ◽  
Yorick Post ◽  
Marie Bannier-Hélaouët ◽  
Andrea Mattiotti ◽  
Jarno Drost ◽  
...  

The significance of cardiac stem cell (CSC) populations for cardiac regeneration remains disputed. Here, we apply the most direct definition of stem cell function (the ability to replace lost tissue through cell division) to interrogate the existence of CSCs. By single-cell mRNA sequencing and genetic lineage tracing using two Ki67 knockin mouse models, we map all proliferating cells and their progeny in homoeostatic and regenerating murine hearts. Cycling cardiomyocytes were only robustly observed in the early postnatal growth phase, while cycling cells in homoeostatic and damaged adult myocardium represented various noncardiomyocyte cell types. Proliferative postdamage fibroblasts expressing follistatin-like protein 1 (FSTL1) closely resemble neonatal cardiac fibroblasts and form the fibrotic scar. Genetic deletion of Fstl1 in cardiac fibroblasts results in postdamage cardiac rupture. We find no evidence for the existence of a quiescent CSC population, for transdifferentiation of other cell types toward cardiomyocytes, or for proliferation of significant numbers of cardiomyocytes in response to cardiac injury.


2018 ◽  
Vol 215 (11) ◽  
pp. 2815-2832 ◽  
Author(s):  
Samik Upadhaya ◽  
Catherine M. Sawai ◽  
Efthymia Papalexi ◽  
Ali Rashidfarrokhi ◽  
Geunhyo Jang ◽  
...  

Adult hematopoiesis has been studied in terms of progenitor differentiation potentials, whereas its kinetics in vivo is poorly understood. We combined inducible lineage tracing of endogenous adult hematopoietic stem cells (HSCs) with flow cytometry and single-cell RNA sequencing to characterize early steps of hematopoietic differentiation in the steady-state. Labeled cells, comprising primarily long-term HSCs and some short-term HSCs, produced megakaryocytic lineage progeny within 1 wk in a process that required only two to three cell divisions. Erythroid and myeloid progeny emerged simultaneously by 2 wk and included a progenitor population with expression features of both lineages. Myeloid progenitors at this stage showed diversification into granulocytic, monocytic, and dendritic cell types, and rare intermediate cell states could be detected. In contrast, lymphoid differentiation was virtually absent within the first 3 wk of tracing. These results show that continuous differentiation of HSCs rapidly produces major hematopoietic lineages and cell types and reveal fundamental kinetic differences between megakaryocytic, erythroid, myeloid, and lymphoid differentiation.


2020 ◽  
Vol 82 (1) ◽  
pp. 63-78 ◽  
Author(s):  
Michelle D. Tallquist

Cardiac fibrosis is a pathological condition that occurs after injury and during aging. Currently, there are limited means to effectively reduce or reverse fibrosis. Key to identifying methods for curbing excess deposition of extracellular matrix is a better understanding of the cardiac fibroblast, the cell responsible for collagen production. In recent years, the diversity and functions of these enigmatic cells have been gradually revealed. In this review, I outline current approaches for identifying and classifying cardiac fibroblasts. An emphasis is placed on new insights into the heterogeneity of these cells as determined by lineage tracing and single-cell sequencing in development, adult, and disease states. These recent advances in our understanding of the fibroblast provide a platform for future development of novel therapeutics to combat cardiac fibrosis.


2008 ◽  
Vol 36 (3) ◽  
pp. 353-356 ◽  
Author(s):  
Susan Bonner-Weir ◽  
Akari Inada ◽  
Shigeru Yatoh ◽  
Wan-Chun Li ◽  
Tandy Aye ◽  
...  

The regenerative process in the pancreas is of particular interest, since diabetes, whether Type 1 or Type 2, results from an inadequate amount of insulin-producing β-cells. Islet neogenesis, or the formation of new islets, seen as budding of hormone-positive cells from the ductal epithelium, has long been considered to be one of the mechanisms of normal islet growth after birth and in regeneration, and suggested the presence of pancreatic stem cells. Results from the rat regeneration model of partial pancreatectomy led us to hypothesize that differentiated pancreatic ductal cells were the pancreatic progenitors after birth, and that with replication they regressed to a less differentiated phenotype and then could differentiate to form new acini and islets. There are numerous supportive results for this hypothesis of neogenesis, including the ability of purified primary human ducts to form insulin-positive cells budding from ducts. However, to rigorously test this hypothesis, we took a direct approach of genetically marking ductal cells using CAII (carbonic anhydrase II) as a duct-cell-specific promoter to drive Cre recombinase in lineage-tracing experiments using the Cre-Lox system. We show that CAII-expressing pancreatic cells act as progenitors that give rise to both new islets and acini after birth and after injury (ductal ligation). This identification of a differentiated pancreatic cell type as an in vivo progenitor for all differentiated pancreatic cell types has implications for a potential expandable source for new islets for replenishment therapy for diabetes either in vivo or ex vivo.


2006 ◽  
Vol 291 (3) ◽  
pp. H1015-H1026 ◽  
Author(s):  
Troy A. Baudino ◽  
Wayne Carver ◽  
Wayne Giles ◽  
Thomas K. Borg

Cardiac function is determined by the dynamic interaction of various cell types and the extracellular matrix that composes the heart. This interaction varies with the stage of development and the degree and duration of mechanical, chemical, and electrical signals between the various cell types and the ECM. Understanding how these complex signals interact at the molecular, cellular, and organ levels is critical to understanding the function of the heart under a variety of physiological and pathophysiological conditions. Quantitative approaches, both in vivo and in vitro, are essential to understand the dynamic interaction of mechanical, chemical, and electrical stimuli that govern cardiac function. The fibroblast can thus be a friend in normal function or a foe in pathophysiological conditions.


2005 ◽  
Vol 289 (4) ◽  
pp. C778-C784 ◽  
Author(s):  
Joshua S. Krumenacker ◽  
Alexander Kots ◽  
Ferid Murad

The decreased expression of the nitric oxide (NO) receptor, soluble guanylyl cyclase (sGC), occurs in response to multiple stimuli in vivo and in cell culture and correlates with various disease states such as hypertension, inflammation, and neurodegenerative disorders. The ability to understand and modulate sGC expression and cGMP levels in any of these conditions could be a valuable therapeutic tool. We demonstrate herein that the c-Jun NH2-terminal kinase JNK II inhibitor anthra[1,9- cd]pyrazol-6(2 H)-one (SP-600125) completely blocked the decreased expression of sGCα1-subunit mRNA by nerve growth factor (NGF) in PC12 cells. Inhibitors of the ERK and p38 MAPK pathways, PD-98059 and SB-203580, had no effect. SP-600125 also inhibited the NGF-mediated decrease in the expression of sGCα1protein as well as sGC activity in PC12 cells. Other experiments revealed that decreased sGCα1mRNA expression through a cAMP-mediated pathway, using forskolin, was not blocked by SP-600125. We also demonstrate that TNF-α/IL-1β stimulation of rat fetal lung (RFL-6) fibroblast cells resulted in sGCα1mRNA inhibition, which was blocked by SP-600125. Expression of a constitutively active JNKK2-JNK1 fusion protein in RFL-6 cells caused endogenous sGCα1mRNA levels to decrease, while a constitutively active ERK2 protein had no effect. Collectively, these data demonstrate that SP-600125 may influence the intracellular levels of the sGCα1-subunit in certain cell types and may implicate a role for c-Jun kinase in the regulation of sGCα1expression.


2021 ◽  
Author(s):  
Atesh K Worthington ◽  
Taylor S Cool ◽  
Donna M Poscablo ◽  
Adeel Hussaini ◽  
Anna E Beaudin ◽  
...  

Traditional, adult-derived lymphocytes that circulate provide adaptive immunity to infection and pathogens. However, subsets of lymphoid cells are also found in non-lymphoid tissues and are called tissue-resident lymphoid cells (TLCs). TLCs encompass a wide array of cell types that span the spectrum of innate-to-adaptive immune function. Unlike traditional lymphocytes that are continuously generated from hematopoietic stem cells (HSCs), many TLCs are of fetal origin and poorly generated from adult HSCs. Here, we sought to understand the development of murine TLCs across multiple tissues and therefore probed the roles of Flk2 and IL7R⍺, two cytokine receptors with known roles in traditional lymphopoiesis. Using Flk2- and Il7r-Cre lineage tracing models, we found that peritoneal B1a cells, splenic marginal zone B (MZB) cells, lung ILC2s and regulatory T cells (Tregs) were highly labeled in both models. Despite this high labeling, highly quantitative, in vivo functional approaches showed that the loss of Flk2 minimally affected the generation of these cells in situ. In contrast, the loss of IL7R⍺, or combined deletion of Flk2 and IL7R⍺, dramatically reduced the cell numbers of B1a cells, MZBs, ILC2s, and Tregs both in situ and upon transplantation, indicating an intrinsic and more essential role for IL7Rα. Surprisingly, reciprocal transplants of WT HSCs showed that an IL7Rα-/- environment selectively impaired reconstitution of TLCs when compared to TLC numbers in situ. Taken together, our data revealed functional roles of Flk2 and IL7Rα in the establishment of tissue-resident lymphoid cells.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Onur Kanisicak ◽  
Hadi Khalil ◽  
Jason Karch ◽  
Matthew Brody ◽  
Suh-Chin Lin ◽  
...  

Resident cardiac fibroblasts (CFs) are potential therapeutic targets in treating or preventing heart failure since they play a critical role in cardiac remodeling and fibrosis after injury or with prolonged stress stimulation. Heterogeneity among activated fibroblasts within the heart has been noted by a number of previous studies in the literature. In addition to resident CFs, many cell types such as endothelial, perivascular and bone marrow cells have been suggested to go through a mesenchymal transition and acquire a myofibroblast-like phenotype during disease conditions. Hence, the cellular origin of the activated myofibroblast within the heart remains uncertain, in part because of a lack in reliable genetic strategies to define cellular lineage. Recent studies suggest that epicardial precursor cells expressing transcription factor 21 (Tcf21) give rise to resident CFs in the adult heart. In addition, the secreted matricellular protein periostin (Postn), appears to be expressed only within activated fibroblasts (myofibroblasts) within the heart. Here we used Tcf21-MerCreMer (Tcf21MCM) knockin mice and Postn-MerCreMer (PostnMCM) knock-in (KI) mice to lineage trace resident CFs and myofibroblasts with injury stimulation. To account for other potential cellular lineages giving rise to fibroblasts in the heart we also performed lineage tracing with the mouse genetic models including LysM-Cre (macrophage), ckit-Cre (bone marrow), Tie2CreERT2 (endothelial) and Myh11-CreERT2 (smooth muscle) in conjunction ROSA26 (R26) locus based loxP inactivated reporter alleles. Results of this study indicate that the Tcf21+ resident CFs are the predominant source for the activated periostin+ MFs which are the key mediators of extracellular matrix (ECM) production and ECM stability in heart whereas the contribution of other lineages to MFs are minimal. Additionally, we have performed single cell RNA sequencing on TCF21+ and Postn+ isolated CFs pre and post myocardial injury in order to define the fibroblast lineage itself at greater molecular depth.


Sign in / Sign up

Export Citation Format

Share Document