Abstract 96: Inactivation of Neddylation Causes Left Ventricular Noncompaction Cardiomyopathy Through Suppressing YAP Signaling

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Jianqiu Zou ◽  
Wenxia Ma ◽  
Jie Li ◽  
Rodney Littlejohn ◽  
Il-man Kim ◽  
...  

Rationale: Cardiac development is orchestrated by a number of growth factors, transcription factors and epigenetic regulators, perturbation of which can lead to congenital heart diseases and cardiomyopathies. However, the role of novel ubiquitin-like protein modifiers, such as NEDD8 (neural precursor cells expressed developmentally downregulated 8), in cardiac development is unknown. Objectives: The objective of this study was to determine the significance of NEDD8 modification (neddylation) during perinatal cardiac development. Methods and Results: Neddylated proteins and NEDD8 enzymes were highly abundant in fetal and neonatal hearts but downregulated in adult hearts. We employed an αMHC Cre transgene to delete NAE1, a subunit of the NEDD8 E1 enzyme, in the perinatal mouse heart. Cardiac-specific deletion of NAE1 (NAE1 CKO ) significantly decreased neddylated proteins in the heart. The NAE1 CKO mice displayed cardiac hypoplasia, ventricular non-compaction and heart failure during late gestation, which became more pronounced by postnatal day 1 and led to perinatal lethality. Mechanistically, genetic deletion or pharmacological inhibition of NAE1 resulted in accumulation of Hippo kinases Mst1 and LATS1/2, which in turn phosphorylated and inactivated YAP, a transcription cofactor necessary for cardiomyocyte proliferation, leading to dysregulation of a number of cell cycle-regulatory genes and blockade of cardiomyocyte proliferation in vivo and in vitro . Reactivation of YAP signaling by overexpression of a constitutively-active YAP mutant (YAP 5SA ), but not its wild-type counterpart, overcame the blockade of cardiomyocyte proliferation induced by inhibition of NAE1. Conclusions: Our findings establish the importance of neddylation in the heart, more specifically, in ventricular chamber maturation, and identify neddylation as a novel regulator of Hippo-YAP signaling to promote cardiomyocyte proliferation.

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Wen-Feng Cai ◽  
Guan-Sheng Liu ◽  
Lei Wang ◽  
Christian Paul ◽  
Zhi-Li Wen ◽  
...  

Cardiac regeneration is a homeostatic cardiogenic process by which the sections of malfunctioning adult cardiovascular tissues are repaired and renewed employing a combination of both cardiomyogenesis and angiogenesis. Unfortunately, while high-quality regeneration can be performed in amphibians and zebrafish hearts, mammalian hearts do not respond in kind. Indeed, a long-term loss of proliferative capacity in mammalian adult cardiomyocytes in combination with dysregulated induction of tissue fibrosis impairs mammalian endogenous heart regenerative capacity, leading to deleterious cardiac remodeling at the end stage of heart failure. Interestingly, several studies have demonstrated that cardiomyocyte proliferation capacity is retained in mammals very soon after birth, and cardiac regeneration potential is correspondingly preserved in some preadolescent vertebrates after myocardial infarction. There is therefore great interest in uncovering the molecular mechanisms that may allow heart regeneration during adult stages. This review will summarize recent findings on cardiac regenerative regulatory mechanisms, especially with respect to extracellular signals and intracellular pathways that may provide novel therapeutics for heart diseases. Particularly, bothin vitroandin vivoexperimental evidences will be presented to highlight the functional role of these signaling cascades in regulating cardiomyocyte proliferation, cardiomyocyte growth, and maturation, with special emphasis on their responses to heart tissue injury.


2021 ◽  
Vol 22 (18) ◽  
pp. 9944
Author(s):  
Yongwoon Lim ◽  
Anna Jeong ◽  
Duk-Hwa Kwon ◽  
Yeong-Un Lee ◽  
Young-Kook Kim ◽  
...  

Various heart diseases cause cardiac remodeling, which in turn leads to ineffective contraction. Although it is an adaptive response to injury, cardiac fibrosis contributes to this remodeling, for which the reactivation of quiescent myofibroblasts is a key feature. In the present study, we investigated the role of the p300/CBP-associated factor (PCAF), a histone acetyltransferase, in the activation of cardiac fibroblasts. An intraperitoneal (i.p.) injection of a high dose (160 mg/kg) of isoproterenol (ISP) induced cardiac fibrosis and reduced the amount of the PCAF in cardiac fibroblasts in the mouse heart. However, the PCAF activity was significantly increased in cardiac fibroblasts, but not in cardiomyocytes, obtained from ISP-administered mice. An in vitro study using human cardiac fibroblast cells recapitulated the in vivo results; an treatment with transforming growth factor-β1 (TGF-β1) reduced the PCAF, whereas it activated the PCAF in the fibroblasts. PCAF siRNA attenuated the TGF-β1-induced increase in and translocation of fibrosis marker proteins. PCAF siRNA blocked TGF-β1-mediated gel contraction and cell migration. The PCAF directly interacted with and acetylated mothers against decapentaplegic homolog 2 (SMAD2). PCAF siRNA prevented TGF-β1-induced phosphorylation and the nuclear localization of SMAD2. These results suggest that the increase in PCAF activity during cardiac fibrosis may participate in SMAD2 acetylation and thereby in its activation.


2019 ◽  
Author(s):  
Marie Cauquil ◽  
Céline Mias ◽  
Céline Guilbeau-Frugier ◽  
Clément Karsenty ◽  
Marie-Hélène Seguelas ◽  
...  

AbstractAimsDeciphering the innate mechanisms governing the blockade of proliferation in adult cardiomyocytes (CMs) is challenging for mammalian heart regeneration. Despite the exit of CMs from the cell cycle during the postnatal maturation period coincides with their morphological switch to a typical adult rod-shape, whether these two processes are connected is unknown. Here, we examined the role of ephrin-B1, a CM rod-shape stabilizer, in adult CM proliferation and cardiac regeneration.Methods and resultsTransgenic- or AAV9-based ephrin-B1 repression in adult mouse heart led to substantial proliferation of resident CMs and tissue regeneration to compensate for apex resection, myocardial infarction (MI) and senescence. Interestingly, in the resting state, CMs lacking ephrin-B1 did not constitutively proliferate, indicative of no major cardiac defects. However, they exhibited proliferation-competent signature, as indicated by higher mononucleated state and a dramatic decrease of miR-195 mitotic blocker, which can be mobilized under neuregulin-1 stimulation in vitro and in vivo. Mechanistically, the post-mitotic state of the adult CM relies on ephrin-B1 sequestering of inactive phospho-Yap1, the effector of the Hippo-pathway, at the lateral membrane. Hence, ephrin-B1 repression leads to phospho-Yap1 release in the cytosol but CM quiescence at resting state. Upon cardiac stresses (apectomy, MI, senescence), Yap1 could be activated and translocated to the nucleus to induce proliferation-gene expression and consequent CM proliferationConclusionsOur results identified ephrin-B1 as a new natural locker of adult CM proliferation and emphasize that targeting ephrin-B1 may prove a future promising approach in cardiac regenerative medicine for HF treatment.SignificanceThe mammalian adult heart is unable to regenerate due to the inability of cardiomyocytes (CMs) to proliferate and replace cardiac tissue lost. Exploiting CM-specific transgenic mice or AAV9-based gene therapy, this works identifies ephrin-B1, a specific rod-shape stabilizer of the adult CM, as a natural padlock of adult CM proliferation for compensatory adaptation to different cardiac stresses (apectomy, MI, senescence), thus emphasizing a new link between the adult CM morphology and their proliferation potential. Moreover, the study demonstrates proof-of-concept that targeting ephrin-B1 may be an innovative therapeutic approach for ischemic heart failure.


Author(s):  
Hong Zhao ◽  
Yi Zhang ◽  
Xiaochan Xu ◽  
Qiushi Sun ◽  
Chunyan Yang ◽  
...  

Direct conversion of fibroblasts into induced cardiomyocytes (iCMs) holds promising potential to generate functional cardiomyocytes for drug development and clinical applications, especially for direct in situ heart regeneration by delivery of reprogramming genes into adult cardiac fibroblasts in injured hearts. For a decade, many cocktails of transcription factors have been developed to generate iCMs from fibroblasts of different tissues in vitro and some were applied in vivo. Here, we aimed to develop genetic cocktails that induce cardiac reprogramming directly in cultured cardiac fibroblasts isolated from adult mice with myocardial infarction (MICFs), which could be more relevant to heart diseases. We found that the widely used genetic cocktail, Gata4, Mef2c, and Tbx5 (GMT) were inefficient in reprogramming cardiomyocytes from MICFs. In a whole well of a 12-well plate, less than 10 mCherry+ cells (<0.1%) were observed after 2 weeks of GMT infection with Myh6-reporter transgenic MICFs. By screening 22 candidate transcription factors predicted through analyzing the gene regulatory network of cardiac development, we found that five factors, GMTMS (GMT plus Myocd and Sall4), induced more iCMs expressing the cardiac structural proteins cTnT and cTnI at a frequency of about 22.5 ± 2.7% of the transduced MICFs at day 21 post infection. What is more, GMTMS induced abundant beating cardiomyocytes at day 28 post infection. Specifically, Myocd contributed mainly to inducing the expression of cardiac proteins, while Sall4 accounted for the induction of functional properties, such as contractility. RNA-seq analysis of the iCMs at day 28 post infection revealed that they were reprogrammed to adopt a cardiomyocyte-like gene expression profile. Overall, we show here that Sall4 and Myocd play important roles in cardiac reprogramming from MICFs, providing a cocktail of genetic factors that have potential for further applications in in vivo cardiac reprogramming.


2002 ◽  
Vol 283 (4) ◽  
pp. H1439-H1445 ◽  
Author(s):  
Margot C. LaPointe ◽  
Xiao-Ping Yang ◽  
Oscar A. Carretero ◽  
Quan He

To selectively introduce genes into the mouse myocardium, we used a recombinant adenovirus encoding a transgene composed of a cardiac-specific promoter [the proximal human brain natriuretic peptide (hBNP) promoter] coupled to a luciferase reporter gene (Ad.hBNPLuc). Activity in vitro and in vivo was compared with Ad.CMVLuc, which contained the cytomegalovirus (CMV) enhancer/promoter. We tested cell-specific and inducible regulation of Ad.hBNPLuc in vitro. Expression was higher in neonatal cardiac myocytes than in a fibroblast cell line and was induced by interleukin-1β, phenylephrine, and isoproterenol in myocytes. For in vivo experiments, Ad.hBNPLuc, Ad.CMVLuc, or vehicle was injected into the left ventricular (LV) free wall of the mouse heart. In Ad.hBNPLuc-injected mice, luciferase activity was only detected in the heart. In contrast, Ad.CMVLuc-injected mice had detectable luciferase activity in all tissues examined. Our studies indicate that 1) the cardiac-specific hBNP promoter and direct cardiac injection limit expression of the transgene to the LV free wall; and 2) transgene expression in vitro is inducible and cardiac myocyte specific. Thus the use of the proximal hBNP promoter in recombinant adenoviral vectors may allow cardiac-specific and inducible expression of therapeutic genes in vivo and prevent some of the side effects of systemic adenovirus administration.


2018 ◽  
Vol 48 (5) ◽  
pp. 1894-1900 ◽  
Author(s):  
Jianzhong Ai ◽  
Yong He ◽  
Mingxia Zheng ◽  
Yi Wen ◽  
Huan Zhang ◽  
...  

Background/Aims: Cardiovascular diseases (CVD) are the leading causes for human mortality. However, the effective treatment for these diseases are still lacking. Currently, gene therapy could be a potential way for efficiently treating heart diseases. The aim of our study is to analyze the transduction efficacy and safety profile of recombinant adeno associated virus (AAV) serotype 9 for cardiomyocytes in vivo and in vitro. Methods: We produced rAAV serotype 9 expressing enhanced green fluorescence protein (EGFP) driven by a cardiac troponin T (cTNT) promoter, and characterized its transduction efficiency in primary cultured cardiomyocytes in vitro, and in wild-type mouse heart tissue in vivo. Results: Our data showed that rAAV9 efficiently transduced mouse cardiomyocytes in vitro. Following intravenous injection, rAAV9 could efficiently and safely transduce cardiomyocytes that are involved in heart diseases. Conclusion: Our findings suggested that rAAV9 can efficiently and safely transduce cardiomyocytes in vitro and/or in vivo. The rAAV9 serotype vector could constitute a powerful toolbox for future gene therapy of heart diseases.


1997 ◽  
Vol 36 (08) ◽  
pp. 259-264
Author(s):  
N. Topuzović

Summary Aim: The purpose of this study was to investigate the changes in blood activity during rest, exercise and recovery, and to assess its influence on left ventricular (LV) volume determination using the count-based method requiring blood sampling. Methods: Forty-four patients underwent rest-stress radionuclide ventriculography; Tc-99m-human serum albumin was used in 13 patients (Group I), red blood cells was labeled using Tc-99m in 17 patients (Group II) in vivo, and in 14 patients (Group III) by modified in vivo/in vitro method. LV volumes were determined by a count-based method using corrected count rate in blood samples obtained during rest, peak exercise and after recovery. Results: In group I at stress, the blood activity decreased by 12.6 ± 5.4%, p <0.05, as compared to the rest level, and increased by 25.1 ± 6.4%, p <0.001, and 12.8 ± 4.5%, p <0.05, above the resting level in group II and III, respectively. This had profound effects on LV volume determinations if only one rest blood aliquot was used: during exercise, the LV volumes significantly decreased by 22.1 ± 9.6%, p <0.05, in group I, whereas in groups II and III it was significantly overestimated by 32.1 ± 10.3%, p <0.001, and 10.7 ± 6.4%, p <0.05, respectively. The changes in blood activity between stress and recovery were not significantly different for any of the groups. Conclusion: The use of only a single blood sample as volume aliquot at rest in rest-stress studies leads to erroneous estimation of cardiac volumes due to significant changes in blood radioactivity during exercise and recovery.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 386
Author(s):  
Ana Santos ◽  
Yongjun Jang ◽  
Inwoo Son ◽  
Jongseong Kim ◽  
Yongdoo Park

Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
HuiYa Li ◽  
DanQing Hu ◽  
Guilin Chen ◽  
DeDong Zheng ◽  
ShuMei Li ◽  
...  

AbstractBoth weak survival ability of stem cells and hostile microenvironment are dual dilemma for cell therapy. Adropin, a bioactive substance, has been demonstrated to be cytoprotective. We therefore hypothesized that adropin may produce dual protective effects on the therapeutic potential of stem cells in myocardial infarction by employing an adropin-based dual treatment of promoting stem cell survival in vitro and modifying microenvironment in vivo. In the current study, adropin (25 ng/ml) in vitro reduced hydrogen peroxide-induced apoptosis in rat bone marrow mesenchymal stem cells (MSCs) and improved MSCs survival with increased phosphorylation of Akt and extracellular regulated protein kinases (ERK) l/2. Adropin-induced cytoprotection was blocked by the inhibitors of Akt and ERK1/2. The left main coronary artery of rats was ligated for 3 or 28 days to induce myocardial infarction. Bromodeoxyuridine (BrdU)-labeled MSCs, which were in vitro pretreated with adropin, were in vivo intramyocardially injected after ischemia, following an intravenous injection of 0.2 mg/kg adropin (dual treatment). Compared with MSCs transplantation alone, the dual treatment with adropin reported a higher level of interleukin-10, a lower level of tumor necrosis factor-α and interleukin-1β in plasma at day 3, and higher left ventricular ejection fraction and expression of paracrine factors at day 28, with less myocardial fibrosis and higher capillary density, and produced more surviving BrdU-positive cells at day 3 and 28. In conclusion, our data evidence that adropin-based dual treatment may enhance the therapeutic potential of MSCs to repair myocardium through paracrine mechanism via the pro-survival pathways.


Sign in / Sign up

Export Citation Format

Share Document