Abstract 418: Caveolar Disruption of L-type Calcium Channel and Ryanodine Receptor Facilitates Atrial Ectopy and Arrhythmogenesis in Heart Failure Mice

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Di Lang ◽  
Lucas ratajczyk ◽  
Leonid Tyan ◽  
Daniel Turner ◽  
Francisco Alvarado ◽  
...  

Atrial fibrillation (AF) often occurs during heart failure (HF). Ectopic foci that trigger AF, are linked to discrete atrial regions that experience the highest remodeling and clinically used for AF ablation; however, mechanisms of their arrhythmogenic propensity remain elusive. We employed in vivo ECG telemetry, in vitro optical mapping and confocal imaging of Ca 2+ transients (CaT) from myocytes isolated from the right atrial appendage (RAA) and inter-caval region (ICR) of wild type (WT, n=10), caveolin-3 knockout (KO, n=6) and 8-weeks post-myocardial infarction HF (n=8) mice. HF and KO mice showed an increased susceptibility to pacing-induced AF and enhanced ectopy originated exclusively from ICR. Optical mapping in isolated atria showed prolongation of CaT rise up time (CaT-RT) in HF ICR, which suggested a remodeled coupling between L-type Ca 2+ channels (LTCCs) and ryanodine receptors (RyRs) in this specific region. In WT mice, RAA consists of structured myocytes with a prominent transverse-axial tubular system (TATS) while ICR myocytes don’t have TATS. In RAA, CaT-RT depends on LTCCs in TATS triggering RyR, while in ICR, all the LTCCs are localized in surface caveolae where they can activate subsarcolemmal RyRs and lead to a slow diffusion of Ca 2+ inside the cell interior. Downregulation of caveolae was observed specifically in HF ICR. To mimic this, we used cav3-KO mice. Triggered activities were observed in myocytes isolated from HF and KO ICR, which presumably underlie the ectopic activities in tissue level. These myocytes presented significantly unsynchronized sarcoplasmic reticulum (SR) Ca 2+ releases (synchronization index: 10.8±0.9 in WT vs 38.3±4.1 in HF vs 21.5±2.1 in KO, p <0.01 for HF and KO vs WT respectively) especially at the subsarcolemmal space that prolongs CaT-RT (62.2±4.1 ms in WT vs 122.5±12.8 ms in KO, p <0.01). In addition, failing ICR myocytes showed a higher occurrence and size of spontaneous Ca 2+ sparks which were linked to CaMKII activity and associated phosphorylation of RyR. Our findings demonstrate that in HF, caveolar disruption creates “hot spots” for arrhythmogenic ectopic activity emanated from discrete vulnerable regions of the right atrium which are associated with desynchronized SR Ca 2+ release and elevated fibrosis.

EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
A Scridon ◽  
VB Halatiu ◽  
AI Balan ◽  
DA Cozac ◽  
GV Moldovan ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI Background The autonomic control of the pacemaker current, If, and the molecular mechanisms underlying parasympathetic If modulation are well understood. Conversely, the effects of chronic If blockade on the parasympathetic nervous system and on the heart rate (HR) response to acute parasympathetic changes are still largely unknown. Such interactions could significantly influence the course of patients undergoing chronic therapy with the If blocker ivabradine. Purpose We aimed to assess the effects of long-term If blockade using ivabradine on cardiac autonomic modulation and on the cardiovascular response to acute in vivo and in vitro parasympathetic stimulation. Methods Radiotelemetry ECG transmitters were implanted in 6 Control and 10 ivabradine-treated male Wistar rats (IVA; 3 weeks, 10 mg/kg/day); sympathetic and parasympathetic heart rate variability parameters were assessed. At the end of the study, the right atrium was removed and right atrial HCN(1-4) RNA expression levels were analyzed. The HR and systolic blood pressure (SBP) responses to in vivo electrical stimulation of the right vagus nerve (2–20 Hz) and the spontaneous sinus node discharge rate (SNDR) response to in vitro cholinergic receptors stimulation using carbamylcholine (10-9–10-6 mol/L) were assessed in 6 additional Control and 10 IVA rats. Results At the end of the study, mean 24-h HR was significantly lower in the IVA compared with the Control rats (301.3 ± 7.5 bpm vs. 341.5 ± 8.3 bpm; p&lt; 0.01). Ivabradine administration led to a significant increase in vagal tone and shifted the sympatho-vagal balance towards vagal dominance (awake, asleep, and over 24-h; all p&lt; 0.05). In the Control rats, in vivo vagus nerve stimulation induced a progressive decrease in both the SBP (p = 0.0001) and the HR (p&lt; 0.0001). Meanwhile, in the IVA rats, vagal stimulation had no effect on the HR (p = 0.16) and induced a significantly lower drop in SBP (p&lt; 0.05). Ivabradine-treated rats also presented a significantly lower SNDR drop in response to carbamylcholine (p&lt; 0.01) and significantly higher HCN4 expression (p = 0.02). Conclusion Long-term If blockade using ivabradine caused a significant increase in vagal tone and shifted the autonomic balance towards vagal dominance in rats. Given the highly proarrhythmic effects of vagal activation at the atrial level, these findings could provide an explanation for the increased risk of atrial fibrillation associated with ivabradine use in clinical trials. In addition, ivabradine reduced the HR response to direct muscarinic receptors stimulation, canceled the cardioinhibitory response and blunted the hemodynamic response to in vivo vagal stimulation, and led to significant sinus node HCN4 up-regulation. These data suggest that ivabradine-induced HCN4 and the consequent If up-regulation could render the sinus node less sensitive to acute vagal inputs and could thus protect against excessive bradycardia induced by acute vagal activation.


2002 ◽  
Vol 103 (s2002) ◽  
pp. 237S-240S ◽  
Author(s):  
Henning MORAWIETZ ◽  
Winfried GOETTSCH ◽  
Marten SZIBOR ◽  
Matthias BARTON ◽  
Sidney SHAW ◽  
...  

Endothelin-1 (ET-1) is considered to be involved in the development and progression of heart failure. Therefore, we analysed the expression of endothelin-converting enzyme-1 (ECE-1), endothelin receptors A (ETA) and B (ETB) mRNAs by standard-calibrated, competitive reverse transcriptase-PCR using an internal-deleted in vitro-transcribed cRNA standard. ET-1 peptide levels were measured using isoform-specific rabbit antibodies against synthetic ET-1. mRNA and protein expression was determined in the right atrial myocardium of New York Heart Association class I patients and class IV patients undergoing aorto-coronary bypass surgery. ECE-1 mRNA was upregulated in failing atrial myocardium. Furthermore, ET-1 peptide levels were increased in failing atrial myocardium. Atrial ETA mRNA expression was not changed, while ETB mRNA was downregulated in the failing atrial myocardium. Our results support an upregulation of ET-1 synthesis by induction of ECE-1 in failing atrial myocardium. Pharmacological inhibition of augmented ECE-1 expression might provide a new therapeutic perspective in the treatment of heart failure.


2005 ◽  
Vol 53 (5) ◽  
pp. 583-592 ◽  
Author(s):  
Larissa Wakefield ◽  
Valerie Cornish ◽  
Fiona Broackes-Carter ◽  
Edith Sim

Murine arylamine N-acetyltransferase 2 (NAT2) is expressed in the developing heart and in the neural tube at the time of closure. Classically described as a xenobiotic metabolizing enzyme, there is increasing evidence for a distinct biological role for murine NAT2. We have characterized the expression of arylamine N-acetyltransferase 2 during cardiogenesis, mapping its expression in vivo, using a lacZ insertion deletion, and also in vitro, by measuring NAT2 enzyme activity. These findings show that cardiac Nat2 expression is both temporally and spatially regulated during development. In neonatal mice, cardiac Nat2 expression is most extensive in the central fibrous body and is evident in the atrioventricular valves and the valves of the great vessels. Whereas Nat2 expression is not detected in ventricular myocardial cells, Nat2 is strongly expressed in scattered cells in the region of the sinus node, the epicardium of the right atrial appendage, and in the pulmonary artery. Expression of active NAT2 protein is maximal when the developing heart attains the adult circulation pattern and moves from metabolizing glucose to fatty acids. NAT2 acetylating activity in cardiac tissue from Nat2−/- and Nat2+/- mice indicates a lack of compensating acetylating activity either from other acetylating enzymes or by NAT2 encoded by the wild-type Nat2 allele in Nat2+/- heterozygotes. The temporal and spatial control of murine Nat2 expression points to an endogenous role distinct from xenobiotic metabolism and indicates that Nat2 expression may be useful as a marker in cardiac development.


2003 ◽  
Vol 285 (5) ◽  
pp. R1212-R1223 ◽  
Author(s):  
Rakesh C. Arora ◽  
René Cardinal ◽  
Frank M. Smith ◽  
Jeffrey L. Ardell ◽  
Louis J. Dell'Italia ◽  
...  

The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered α-or β-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to influence cardiodynamics becomes obtunded.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


1997 ◽  
Vol 77 (02) ◽  
pp. 376-382 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryThe possible involvement of secreted platelet substances in agonist- induced [Ca2+]i increases was investigated by comparing these increases in aspirin-treated, fura-2-loaded normal platelets and platelets from patients with storage pool deficiencies (SPD). In the presence and absence of extracellular calcium, the [Ca2+]i response induced by 10 µM ADP, but not those induced by 0.1 unit/ml thrombin, 3.3 µM U46619, or 20 µM serotonin, was significantly greater in SPD platelets than in normal platelets, and was increased to the greatest extent in SPD patients with Hermansky-Pudlak syndrome (HPS), in whom the dense granule deficiencies are the most severe. Pre-incubation of SPD-HPS and normal platelets with 0.005-5 µM ADP produced a dose-dependent inhibition of the [Ca2+]i response induced by 10 µ M ADP, but did not alter the [Ca2+]i increases induced by thrombin or U46619. Within a limited range of ADP concentrations, the dose-inhibition curve of the [Ca2+]i response to 10 µM ADP was significantly shifted to the right in SPD-HPS platelets, indicating that pre-incubation with greater amounts of ADP were required to achieve the same extent of inhibition as in normal platelets. These results are consistent with a hypothesis that the smaller ADP-induced [Ca2+]i increases seen in normal platelets may result from prior interactions of dense granule ADP, released via leakage or low levels of activation, with membrane ADP receptors, causing receptor desensitization. Addition of apyrase to platelet-rich plasma prior to fura-2 loading increased the ADP-induced [Ca2+]i response in both normal and SPD-HPS platelets, suggesting that some release of ADP derived from both dense granule and non-granular sources occurs during in vitro fura-2 loading and platelet washing procedures. However, this [Ca2+]i response was also greater in SPD-HPS platelets when blood was collected with minimal manipulation directly into anticoagulant containing apyrase, raising the possibility that release of dense granule ADP resulting in receptor desensitization may also occur in vivo. Thus, in addition to enhancing platelet activation, dense granule ADP could also act to limit the ADP-mediated reactivity of platelets exposed in vivo to low levels of stimulation.


2021 ◽  
Vol 9 (5) ◽  
pp. 1107
Author(s):  
Wonho Choi ◽  
Yoshihiro Yamaguchi ◽  
Ji-Young Park ◽  
Sang-Hyun Park ◽  
Hyeok-Won Lee ◽  
...  

Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii286-iii286
Author(s):  
Caitlin Ung ◽  
Maria Tsoli ◽  
Jie Liu ◽  
Domenico Cassano ◽  
Dannielle Upton ◽  
...  

Abstract DIPGs are the most aggressive pediatric brain tumors. Currently, the only treatment is irradiation but due to its palliative nature patients die within 12 months. Effective delivery of chemotherapy across the blood-brain barrier (BBB) has been a key challenge for the eradication of this disease. We have developed a novel gold nanoparticle functionalised with human serum albumin (Au-NP, 98.8 ±19 nm) for the delivery of doxorubicin. In this study, we evaluated the cytotoxic efficacy of doxorubicin delivered through gold nanoparticles (Au-NP-Dox). We found that DIPG neurospheres were equally sensitive to doxorubicin and Au-NP-Dox (at equimolar concentration) by alamar blue assay. Colony formation assays demonstrated a significantly more potent effect of Au-NP-Dox compared to doxorubicin alone, while the Au-NP had no effect. Furthermore, western blot analysis indicated increased apoptotic markers cleaved Parp, caspase 3/7 and phosphorylated H2AX in Au-NP-Dox treated DIPG neurospheres. Live cell content and confocal imaging demonstrated significantly higher uptake of Au-NP-Dox compared to doxorubicin alone. Treatment of a DIPG orthotopic mouse model with Au-NP-Dox showed no signs of toxicity with stable weights being maintained during treatment. However, in contrast to the above in vitro findings the in vivo study showed no anti-tumor effect possibly due to poor penetration of Au-NP-Dox into the brain. We are currently evaluating whether efficacy can be improved using measures to open the BBB transiently. This study highlights the need for rigorous in vivo testing of new treatment strategies before clinical translation to reduce the risk of administration of ineffective treatments.


2021 ◽  
Author(s):  
Donald Bejleri ◽  
Matthew Robeson ◽  
Milton Brown ◽  
Jervaughn Hunter ◽  
Joshua Maxwell ◽  
...  

Pediatric patients with congenital heart defects (CHD) often present with heart failure from increased load on the right ventricle (RV) due to both surgical methods to treat CHD and the...


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Francisco J Gonzalez-Gonzalez ◽  
Perike Srikanth ◽  
Andrielle E Capote ◽  
Alsina Katherina M ◽  
Benjamin Levin ◽  
...  

Atrial fibrillation (AF) is the most common sustained arrhythmia, with an estimated prevalence in the U.S.of 6.1 million. AF increases the risk of a thromboembolic stroke in five-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function in AF remains unknown. We have recently identified protein phosphatase 1 subunit 12c (PPP1R12C) as a key molecule targeting myosin light-chain phosphorylation in AF. Objective: We hypothesize that the overexpression of PPP1R12C causes hypophosphorylation of atrial myosin light-chain 2 (MLC2a), thereby decreasing atrial contractility in AF. Methods and Results: Left and right atrial appendage tissues were isolated from AF patients versus sinus rhythm (SR). To evaluate the role of the PP1c-PPP1R12C interaction in MLC2a de-phosphorylation, we utilized Western blots, co-immunoprecipitation, and phosphorylation assays. In patients with AF, PPP1R12C expression was increased 3.5-fold versus SR controls with an 88% reduction in MLC2a phosphorylation. PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF. In vitro studies of either pharmacologic (BDP5290) or genetic (T560A), PPP1R12C activation demonstrated increased PPP1R12C binding with both PP1c and MLC2a, and dephosphorylation of MLC2a. Additionally, to evaluate the role of PPP1R12C expression in cardiac function, mice with lentiviral cardiac-specific overexpression of PPP1R12C (Lenti-12C) were evaluated for atrial contractility using echocardiography, versus wild-type and Lenti-controls. Lenti-12C mice demonstrated a 150% increase in left atrium size versus controls, with reduced atrial strain and atrial ejection fraction. Also, programmed electrical stimulation was performed to evaluate AF inducibility in vivo. Pacing-induced AF in Lenti-12C mice was significantly higher than controls. Conclusion: The overexpression of PPP1R12C increases PP1c targeting to MLC2a and provokes dephosphorylation, associated with a reduction in atrial contractility and an increase in AF inducibility. All these discoveries suggest that PP1 regulation of sarcomere function at MLC2a is a main regulator of atrial contractility in AF.


Sign in / Sign up

Export Citation Format

Share Document