Abstract TP273: Effect of Sex on Brain Microvascular Endothelial Cell Death Pathways: Impact of Hypoxia and Diabetes

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Yasir Abdul ◽  
Emily Grant ◽  
David Vargas ◽  
Sarah Jamil ◽  
Adviye Ergul

Diabetes exacerbates hemorrhagic transformation and worsens survival/recovery after ischemic stroke, especially in female patients. Brain microvascular endothelial cells (BMECs) are early targets in diabetes and ischemic injury. Differences in survival and reparative properties of BMECs may contribute to sex differences seen in stroke recovery. Recent evidence suggests that ferroptotic and necroptotic regulated cell death (RCD) mechanisms are activated in neurons after ischemic injury. Hypothesis: Diabetic conditions amplifies ferroptotic cell death and RCD pathways are differentially activated in female and male cells. Methods: Human male and female BMECs were cultured under normal and diabetic and hypoxic conditions. Cell viability, migration, barrier function and markers of apoptosis (Caspase-3), ferroptosis (IREB2), and necroptosis (RIPK3) were measured. Downstream signaling was assessed using ferroptosis and necroptosis inducers (erastin & TNFa) and inhibitors (Ferrostatin-1 & Necrostatin-1). Results: (Table): Hypoxia caused a greater decrease in cell viability and migration under diabetic conditions especially in male cells. Male cells had greater migratory properties. Diabetic conditions increased apoptotic, necroptotic, and ferroptotic gene expression in female BMECs, while only ferroptotic gene expression was increased in male BMECs. Ferroptosis was differentially regulated in male and females after erastin-1 challenge. Ferrostatin-1 inhibited erastin-induced death in male BMECs but it was not associated with expression of ferroptosis-related genes. Conclusion: Male BMECs are more susceptible to ferroptotic cell death than female BMECs. Diabetes and hypoxic conditions activate different RCD pathways and downstream signaling in male and female BMECs. Identification of sex and disease effects of RCD mechanisms in BMECS has the potential to develop vascular protection/restoration strategies for stroke recovery.

2005 ◽  
Vol 289 (6) ◽  
pp. C1492-C1501 ◽  
Author(s):  
Shahin Foroutan ◽  
Julien Brillault ◽  
Biff Forbush ◽  
Martha E. O’Donnell

Brain edema that forms during the early stages of stroke involves increased transport of Na+ and Cl− across an intact blood-brain barrier (BBB). Our previous studies have shown that a luminal BBB Na+-K+-Cl− cotransporter is stimulated by conditions present during ischemia and that inhibition of the cotransporter by intravenous bumetanide greatly reduces edema formation in the rat middle cerebral artery occlusion model of stroke. The present study focused on investigating the effects of hypoxia, which develops rapidly in the brain during ischemia, on the activity and expression of the BBB Na+-K+-Cl− cotransporter, as well as on Na+-K+-ATPase activity, cell ATP content, and intracellular volume. Cerebral microvascular endothelial cells (CMECs) were assessed for Na+-K+-Cl− cotransporter and Na+-K+-ATPase activities as bumetanide-sensitive and ouabain-sensitive 86Rb influxes, respectively. ATP content was assessed by luciferase assay and intracellular volume by [3H]-3-O-methyl-d-glucose and [14C]-sucrose equilibration. We found that 30-min exposure of CMECs to hypoxia ranging from 7.5% to 0.5% O2 (vs. 19% normoxic O2) significantly increased cotransporter activity as did 7.5% or 2% O2 for up to 2 h. This was not associated with reduction in Na+-K+-ATPase activity or ATP content. CMEC intracellular volume increased only after 4 to 5 h of hypoxia. Furthermore, glucose and pyruvate deprivation increased cotransporter activity under both normoxic and hypoxic conditions. Finally, we found that hypoxia increased phosphorylation but not abundance of the cotransporter protein. These findings support the hypothesis that hypoxia stimulation of the BBB Na+-K+-Cl− cotransporter contributes to ischemia-induced brain edema formation.


2020 ◽  
Vol 134 (14) ◽  
pp. 1887-1909
Author(s):  
Jose L. Viñas ◽  
Christopher J. Porter ◽  
Adrianna Douvris ◽  
Matthew Spence ◽  
Alex Gutsol ◽  
...  

Abstract Female sex protects against development of acute kidney injury (AKI). While sex hormones may be involved in protection, the role of differential gene expression is unknown. We conducted gene profiling in male and female mice with or without kidney ischemia–reperfusion injury (IRI). Mice underwent bilateral renal pedicle clamping (30 min), and tissues were collected 24 h after reperfusion. RNA-sequencing (RNA-Seq) was performed on proximal tubules (PTs) and kidney endothelial cells. Female mice were resistant to ischemic injury compared with males, determined by plasma creatinine and neutrophil gelatinase-associated lipocalin (NGAL), histologic scores, neutrophil infiltration, and extent of apoptosis. Sham mice had sex-specific gene disparities in PT and endothelium, and male mice showed profound gene dysregulation with ischemia–reperfusion compared with females. After ischemia PTs from females exhibited smaller increases compared with males in injury-associated genes lipocalin-2 (Lcn2), hepatitis A virus cellular receptor 1 (Havcr1), and keratin 18 (Krt18), and no up-regulation of SRY-Box transcription factor 9 (Sox9) or keratin 20 (Krt20). Endothelial up-regulation of adhesion molecules and cytokines/chemokines occurred in males, but not females. Up-regulated genes in male ischemic PTs were linked to tumor necrosis factor (TNF) and Toll-like receptor (TLR) pathways, while female ischemic PTs showed up-regulated genes in pathways related to transport. The data highlight sex-specific gene expression differences in male and female PTs and endothelium before and after ischemic injury that may underlie disparities in susceptibility to AKI.


Author(s):  
Junxia Li ◽  
Yiming Xia ◽  
Zhizhong Huang ◽  
Yan Zhao ◽  
Renping Xiong ◽  
...  

Hypoxia-induced pulmonary microvascular endothelial cell (PMVEC) monolayers hyperpermeability is vital for vascular leakage, which participates in vascular diseases, such as acute lung injury (ALI) and high altitude pulmonary edema (HAPE). We previously observed PMVEC permeability was markedly elevated in hypoxia when cocultured with primary type II alveolar epithelial cells (AECII) in which isthmin1(ISM1) was highly upregulated. However, whether the upregulation of ISM1 plays a role in hypoxia-induced PMVEC hyperpermeability is unclear. In this study, we assessed the role of AECII-derived ISM1 in hypoxia-induced PMVEC hyperpermeability with an AECII/PMVEC co-culture system and uncovered the underlying mechanism whereby hypoxia stimulates ISM1 gene expression. We found that ISM1 gene expression was upregulated in cultured AECII cells exposed to hypoxia (3% O2), and that AECII-derived ISM1 participated in hypoxia-induced hyperpermeability of PMVEC monolayers since siRNA-mediated knockdown of ISM1 in AECII markedly attenuated the increasement of PMVEC permeability in co-culture system under hypoxia. Additionally, we confirmed that ISM1 was regulated by hypoxia-inducible factor-1α (HIF1α) according to the evidence that silencing of HIF1α inhibited the hypoxia-mediated upregulation of ISM1. Mechanismly, overexpression of HIF1α transcriptionally activated ISM1 gene expression by directly binding to the conserved regulatory elements upstream of the ism1 locus. We identified a novel HIF-1-target gene ISM1, which involves in hyperpermeability of pulmonary microvascular endothelial cell monolayers under hypoxia. Our in vitro cell experiments implied that the upregulated ISM1 derived from alveolar epithelium might be a vital modulator in hypoxia-induced endothelial hyperpermeability and thereby implicates with hypoxic pulmonary-related diseases.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4391-4391
Author(s):  
Silvia Marino ◽  
Daniela Nicoleta Petrusca ◽  
Edward Simpson ◽  
Judith L Anderson ◽  
Xiang-Qun Xie ◽  
...  

Multiple myeloma (MM) is incurable and 80% of MM patients develop MM bone disease (MMBD). MMBD lesions do not heal due to the persistent suppression of bone formation, which markedly increases mortality and contributes to MM drug resistance. Current treatments for MMBD, such as bisphosphonates and denosumab, target bone destruction but do not result in new bone formation. Although proteasome inhibitors (PIs) have greatly improved survival of MM patients, they only have transient bone anabolic effects. Further, development of drug resistance to PIs remains a major clinical problem. We previously showed that the ZZ domain of p62 (sequestosome-1),plays an important role in both MM growth and suppression of osteoblast (OB) differentiation in the MM microenvironment, by regulating multiple signaling pathways and acting as a cargo-receptor for autophagy. Recently, our collaborators showed that the p62-ZZ is a high-affinity N-recognin of the N-end rule pathway (NERP). p62-ZZ also serves as the molecular switch for necroptotic versus apoptotic cell death pathways. We previously reported that MM cells or TNFα prevent OB differentiation by inducing persistent epigenetic repression of the Runx2-P1 promoter in MM patient bone marrow stromal cells (BMSCs), via the transcriptional repressor Gfi1. We found that blocking p62-ZZ by saturating it with a novel synthetic p62-ZZ/NERP competing ligand, XRK3F2, prevented and reversed MM-induced Gfi1 occupancy at the Runx2-P1 promoter, allowing BMSCs to increase OB marker gene expression and to mineralize. These results suggest that targeting the p62-ZZ/N-end rule pathway would enhance the bone anabolic effects of PIs. To test this hypothesis, we first exposed normal OBs to different doses of bortezomib (Btz) or XRK3F2 or their combination. The combination significantly increased OB differentiation markers Runx2 (60%), Osterix (20%) and ATF4 (60%), and induced mineral deposition compared with either drug alone. The combination also blocked TNFα up-regulation of Gfi1 and suppression of OB differentiation. Interestingly, none of the concentrations tested decreased OB viability. Studies with MM patient-BMSCs showed that XRK3F2 reversed suppression of OB differentiation induced by MM cells, allowing them to mineralize. Importantly, our preliminary in vivo data showed that administration of XRK3F2 to mice with established MM induced dramatic cortical bone formation in MM-containing bones but had no effect on tumor burden. We and others previously showed that MM cells subjected to sustained proteasomal inhibition, rely on p62-mediated autophagic degradation to reduce the proteotoxic load caused by excessive immunoglobulin synthesis. We recently found that targeting the p62-ZZ domain in human MM cells, increases Btz-induced MM cell death, independently of their p53 status. The combination also significantly reduced cell viability in Btz resistant cells although no caspase 3 activation was observed, suggesting a caspase-3 independent cell death. To determine the mechanism(s) responsible for MM cell death induced by the combination, we pretreated MM cell lines and primary CD138+ MM cells with Z-DEVD (20μM), bafilomycin (Baf, 40nM), or necrostatin1 (NEC1, 50μM). The anti-MM effects of XRK3F2 or Btz+XRK3F2 were fully blocked by NEC1, an inhibitor of necroptosis, but not by inhibitors of caspase-dependent apoptosis (Z-DEVD) or autophagy (Baf), supporting that p62-ZZ regulates necroptosis in MM cells. RNAseq analysis of the additive effect of Btz+XRK3F2 on gene expression showed a total of 583 differentially regulated genes, including 374 significantly down-regulated and 209 significantly upregulated. GO term analysis of up-regulated DEGs identified an enrichment in the endoplasmic reticulum (ER) stress and ER unfolded protein response, and regulation of transcription in response to stress and autophagy. In summary, our results demonstrate that targeting the p62-ZZ/N-end rule pathway in combination with PIs in MM significantly reduces MM cell viability by activating multiple death pathway and overcomes PI-resistance of MM cells. In addition, targeting the p62-ZZ in OBs potentiates the bone anabolic action of PIs and reverses the persistent OB suppression induced by MM cells to allow bone formation. Thus, p62-ZZ plays a critical role in MM and bone cells and identifies p62-ZZ as an important molecular target for the treatment of MMBD. Disclosures Xie: Oxis Biotech: Consultancy; ID4Pharma: Other: Founder. Roodman:Amgen: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document