New Support Vector Algorithms

2000 ◽  
Vol 12 (5) ◽  
pp. 1207-1245 ◽  
Author(s):  
Bernhard Schölkopf ◽  
Alex J. Smola ◽  
Robert C. Williamson ◽  
Peter L. Bartlett

We propose a new class of support vector algorithms for regression and classification. In these algorithms, a parameter ν lets one effectively control the number of support vectors. While this can be useful in its own right, the parameterization has the additional benefit of enabling us to eliminate one of the other free parameters of the algorithm: the accuracy parameter ε in the regression case, and the regularization constant C in the classification case. We describe the algorithms, give some theoretical results concerning the meaning and the choice of ν, and report experimental results.

Author(s):  
Maryam Yalsavar ◽  
Paknoosh Karimaghaei ◽  
Akbar Sheikh-Akbari ◽  
Pancham Shukla ◽  
Peyman Setoodeh

The application of the support vector machine (SVM) classification algorithm to large-scale datasets is limited due to its use of a large number of support vectors and dependency of its performance on its kernel parameter. In this paper, SVM is redefined as a control system and iterative learning control (ILC) method is used to optimize SVM’s kernel parameter. The ILC technique first defines an error equation and then iteratively updates the kernel function and its regularization parameter using the training error and the previous state of the system. The closed loop structure of the proposed algorithm increases the robustness of the technique to uncertainty and improves its convergence speed. Experimental results were generated using nine standard benchmark datasets covering a wide range of applications. Experimental results show that the proposed method generates superior or very competitive results in term of accuracy than those of classical and state-of-the-art SVM based techniques while using a significantly smaller number of support vectors.


2003 ◽  
Vol 15 (11) ◽  
pp. 2643-2681 ◽  
Author(s):  
Kai-Min Chung ◽  
Wei-Chun Kao ◽  
Chia-Liang Sun ◽  
Li-Lun Wang ◽  
Chih-Jen Lin

An important approach for efficient support vector machine (SVM) model selection is to use differentiable bounds of the leave-one-out (loo) error. Past efforts focused on finding tight bounds of loo (e.g., radius margin bounds, span bounds). However, their practical viability is still not very satisfactory. Duan, Keerthi, and Poo (2003) showed that radius margin bound gives good prediction for L2-SVM, one of the cases we look at. In this letter, through analyses about why this bound performs well for L2-SVM, we show that finding a bound whose minima are in a region with small loo values may be more important than its tightness. Based on this principle, we propose modified radius margin bounds for L1-SVM (the other case) where the original bound is applicable only to the hard-margin case. Our modification for L1-SVM achieves comparable performance to L2-SVM. To study whether L1-or L2-SVM should be used, we analyze other properties, such as their differentiability, number of support vectors, and number of free support vectors. In this aspect, L1-SVM possesses the advantage of having fewer support vectors. Their implementations are also different, so we discuss related issues in detail.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Chunhua Zhao ◽  
zhangwen Lin ◽  
Jinling Tan ◽  
Hengxing Hu ◽  
Qian Li

Aiming at solving the acquisition problems of wear particle data of large-modulus gear teeth and few training datasets, an integrated model of LCNNE based on transfer learning is proposed in this paper. Firstly, the wear particles are diagnosed and classified by connecting a new joint loss function and two pretrained models VGG19 and GoogLeNet. Subsequently, the wear particles in gearbox lubricating oil are chosen as the experimental object to make a comparison. Compared with the other four models’ experimental results, the model superiority in wear particle identification and classification is verified. Taking five models as feature extractors and support vector machines as classifiers, the experimental results and comparative analysis reveal that the LCNNE model is better than the other four models because its feature expression ability is stronger than that of the other four models.


2020 ◽  
Vol 13 (1) ◽  
pp. 103
Author(s):  
Lena Chang ◽  
Yi-Ting Chen ◽  
Jung-Hua Wang ◽  
Yang-Lang Chang

This study proposed a feature-based decision method for the mapping of rice cultivation by using the time-series C-band synthetic aperture radar (SAR) data provided by Sentinel-1A. In this study, a model related to crop growth was first established. The model was developed based on a cubic polynomial function which was fitted by the complete time-series SAR backscatters during the rice growing season. From the developed model, five rice growth-related features were introduced, including backscatter difference (BD), time interval (TI) between vegetative growth and maturity stages, backscatter variation rate (BVR), average normalized backscatter (ANB) and maximum backscatter (MB). Then, a decision method based on the combination of the five extracted features was proposed to improve the rice detection accuracy. In order to verify the detection performance of the proposed method, the test data set of this study consisted of 50,000 rice and non-rice fields which were randomly sampled from a research area in Taiwan for simulation verification. From the experimental results, the proposed method can improve overall accuracy in rice detection by 6% compared with the method using feature BD. Furthermore, the rice detection efficiency of the proposed method was compared with other four classifiers, including decision tree (DT), support vector machine (SVM), K-nearest neighbor (KNN) and quadratic discriminant analysis (QDA). The experimental results show that the proposed method has better rice detection accuracy than the other four classifiers, with an overall accuracy of 91.9%. This accuracy is 3% higher than fine SVM, which performs best among the other four classifiers. In addition, the consistency and effectiveness of the proposed method in rice detection have been verified for different years and studied regions.


2021 ◽  
Vol 8 (4) ◽  
pp. 747-760
Author(s):  
A. El Ouissari ◽  
◽  
K. El Moutaouakil ◽  

In this work, we propose a deep prediction diabetes system based on a new version of the support vector machine optimization model. First, we determine three types of patients (noisy, cord, and interior) basing on specific parameters. Second, we equilibrate the clinical data sets by suppressing noisy and cord patients. Third, we determine the support vectors by solving an optimization program with a reasonable size. Our system is performed on the well-known diabetes dataset PIMA. The experimental results show that the proposed method improves the prediction accuracy and the proposed system significantly outperforms all other versions of SVM as well as literature methods of classification.


2012 ◽  
Vol 424-425 ◽  
pp. 1342-1346 ◽  
Author(s):  
Xiao Lin Chen ◽  
Yan Jiang ◽  
Min Jie Chen ◽  
Yong Yu ◽  
Hong Ping Nie ◽  
...  

A lot of cost-sensitive support machine vector methods are used to handle the imbalanced datasets, but the obtained results are not as perfect as expectation. A promising method is proposed in this paper, named ADC-SVM, which uses genetic algorithm to dynamically search the optimal misclassification cost to build a cost sensitive support machine. We empirically evaluate ADC-SVM with SVM and Cost-sensitive SVM over 8 realistic imbalanced bi-class datasets from UCI. The experimental results show that ADC-SVM outperforms the other two methods over all the imbalanced datasets.


1994 ◽  
Vol 29 (4) ◽  
pp. 127-132 ◽  
Author(s):  
Naomi Rea ◽  
George G. Ganf

Experimental results demonstrate bow small differences in depth and water regime have a significant affect on the accumulation and allocation of nutrients and biomass. Because the performance of aquatic plants depends on these factors, an understanding of their influence is essential to ensure that systems function at their full potential. The responses differed for two emergent species, indicating that within this morphological category, optimal performance will fall at different locations across a depth or water regime gradient. The performance of one species was unaffected by growth in mixture, whereas the other performed better in deep water and worse in shallow.


2020 ◽  
Vol 27 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Lei Xu ◽  
Guangmin Liang ◽  
Baowen Chen ◽  
Xu Tan ◽  
Huaikun Xiang ◽  
...  

Background: Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. Objective: In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. Method: We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. Results: Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. Conclusion: The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.


2021 ◽  
Vol 40 (1) ◽  
pp. 551-563
Author(s):  
Liqiong Lu ◽  
Dong Wu ◽  
Ziwei Tang ◽  
Yaohua Yi ◽  
Faliang Huang

This paper focuses on script identification in natural scene images. Traditional CNNs (Convolution Neural Networks) cannot solve this problem perfectly for two reasons: one is the arbitrary aspect ratios of scene images which bring much difficulty to traditional CNNs with a fixed size image as the input. And the other is that some scripts with minor differences are easily confused because they share a subset of characters with the same shapes. We propose a novel approach combing Score CNN, Attention CNN and patches. Attention CNN is utilized to determine whether a patch is a discriminative patch and calculate the contribution weight of the discriminative patch to script identification of the whole image. Score CNN uses a discriminative patch as input and predict the score of each script type. Firstly patches with the same size are extracted from the scene images. Secondly these patches are used as inputs to Score CNN and Attention CNN to train two patch-level classifiers. Finally, the results of multiple discriminative patches extracted from the same image via the above two classifiers are fused to obtain the script type of this image. Using patches with the same size as inputs to CNN can avoid the problems caused by arbitrary aspect ratios of scene images. The trained classifiers can mine discriminative patches to accurately identify some confusing scripts. The experimental results show the good performance of our approach on four public datasets.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hossein Ahmadvand ◽  
Fouzhan Foroutan ◽  
Mahmood Fathy

AbstractData variety is one of the most important features of Big Data. Data variety is the result of aggregating data from multiple sources and uneven distribution of data. This feature of Big Data causes high variation in the consumption of processing resources such as CPU consumption. This issue has been overlooked in previous works. To overcome the mentioned problem, in the present work, we used Dynamic Voltage and Frequency Scaling (DVFS) to reduce the energy consumption of computation. To this goal, we consider two types of deadlines as our constraint. Before applying the DVFS technique to computer nodes, we estimate the processing time and the frequency needed to meet the deadline. In the evaluation phase, we have used a set of data sets and applications. The experimental results show that our proposed approach surpasses the other scenarios in processing real datasets. Based on the experimental results in this paper, DV-DVFS can achieve up to 15% improvement in energy consumption.


Sign in / Sign up

Export Citation Format

Share Document