Neural Basis of Visual Distraction

2010 ◽  
Vol 22 (8) ◽  
pp. 1794-1807 ◽  
Author(s):  
So-Yeon Kim ◽  
Joseph B. Hopfinger

The ability to maintain focus and avoid distraction by goal-irrelevant stimuli is critical for performing many tasks and may be a key deficit in attention-related problems. Recent studies have demonstrated that irrelevant stimuli that are consciously perceived may be filtered out on a neural level and not cause the distraction triggered by subliminal stimuli. However, in everyday situations, suprathreshold stimuli often do capture attention, but the neural mechanisms by which some stimuli rapidly and automatically trigger distraction remain unknown. Here, we investigated the neural basis of distraction by utilizing a particularly strong form of distractor: the abrupt appearance of a new object. Our results revealed a competitive relation between brain regions coding the locations of the target and the distractor, with distractor processing increasing and target processing decreasing, but only when the distractor was a new object; an equivalent luminance change to an existing object neither generated distraction nor affected target processing. Results also revealed changes in neural activity in intraparietal sulcus (IPS) and temporo-parietal junction (TPJ) that were unique to the new object distractor condition. The strongest relations between behavioral distraction and neural activity were observed in these parietal regions. Furthermore, participants who were less susceptible to distraction showed a more consistent, albeit more moderate, level of activity in IPS and TPJ. The present results thus provide new evidence regarding the neural mechanisms underlying distraction and resistance to it.

2018 ◽  
Vol 30 (2) ◽  
pp. 200-218 ◽  
Author(s):  
Frank J. Kanayet ◽  
Andrew Mattarella-Micke ◽  
Peter J. Kohler ◽  
Anthony M. Norcia ◽  
Bruce D. McCandliss ◽  
...  

Mapping numbers onto space is foundational to mathematical cognition. These cognitive operations are often conceptualized in the context of a “mental number line” and involve multiple brain regions in or near the intraparietal sulcus (IPS) that have been implicated both in numeral and spatial cognition. Here we examine possible differentiation of function within these brain areas in relating numbers to spatial positions. By isolating the planning phase of a number line task and introducing spatiotopic mapping tools from fMRI into mental number line task research, we are able to focus our analysis on the neural activity of areas in anterior IPS (aIPS) previously associated with number processing and on spatiotopically organized areas in and around posterior IPS (pIPS), while participants prepare to place a number on a number line. Our results support the view that the nonpositional magnitude of a numerical symbol is coded in aIPS, whereas the position of a number in space is coded in posterior areas of IPS. By focusing on the planning phase, we are able to isolate activation related to the cognitive, rather than the sensory–motor, aspects of the task. Also, to allow the separation of spatial position from magnitude, we tested both a standard positive number line (0 to 100) and a zero-centered mixed number line (−100 to 100). We found evidence of a functional dissociation between aIPS and pIPS: Activity in aIPS was associated with a landmark distance effect not modulated by spatial position, whereas activity in pIPS revealed a contralateral preference effect.


2020 ◽  
Author(s):  
Alexandra C. Schmid ◽  
Huseyin Boyaci ◽  
Katja Doerschner

ABSTRACTThere is growing research interest in the neural mechanisms underlying the recognition of material categories and properties. This research field, however, is relatively more recent and limited compared to investigations of the neural mechanisms underlying object and scene category recognition. Motion is particularly important for the perception of non-rigid materials, but the neural basis of non-rigid material motion remains unexplored. Using fMRI, we investigated which brain regions respond preferentially to material motion versus other types of motion. We introduce a new database of stimuli – dynamic dot materials – that are animations of moving dots that induce vivid percepts of various materials in motion, e.g. flapping cloth, liquid waves, wobbling jelly. Control stimuli were scrambled versions of these same animations and rigid three-dimensional rotating dots. Results showed that isolating material motion properties with dynamic dots (in contrast with other kinds of motion) activates a network of cortical regions in both ventral and dorsal visual pathways, including areas normally associated with the processing of surface properties and shape, and extending to somatosensory and premotor cortices. We suggest that such a widespread preference for material motion is due to strong associations between stimulus properties. For example viewing dots moving in a specific pattern not only elicits percepts of material motion; one perceives a flexible, non-rigid shape, identifies the object as a cloth flapping in the wind, infers the object’s weight under gravity, and anticipates how it would feel to reach out and touch the material. These results are a first important step in mapping out the cortical architecture and dynamics in material-related motion processing.


2021 ◽  
Author(s):  
Anwar O. Nunez-Elizalde ◽  
Michael Krumin ◽  
Charu Bai Reddy ◽  
Gabriel Montaldo ◽  
Alan Urban ◽  
...  

SummaryFunctional ultrasound imaging (fUSI) is a popular method for studying brain function, but it remains unclear to what degree its signals reflect neural activity on a trial-by-trial basis. Here, we answer this question with simultaneous fUSI and neural recordings with Neuropixels probes in awake mice. fUSI signals strongly correlated with the slow (<0.3 Hz) fluctuations in firing rate measured in the same location and were closely predicted by convolving the firing rate with a 2.9 s wide linear filter. This filter matched the hemodynamic response function of awake mouse and was invariant across mice, stimulus conditions, and brain regions. fUSI signals matched neural firing also spatially: recordings with two probes revealed that firing rates were as highly correlated across hemispheres as fUSI signals. We conclude that fUSI signals bear a simple linear relationship to neuronal firing and accurately reflect neural activity both in time and in space.


Author(s):  
Eva K Fischer ◽  
Harmony Alvarez ◽  
Katherine M Lagerstrom ◽  
Jordan E McKinney ◽  
Randi Petrillo ◽  
...  

ABSTRACTAggressive competition for resources among juveniles is documented in many species, but the neural mechanisms regulating this behavior in young animals are poorly understood. In poison frogs, increased parental care is associated with decreased water volume of tadpole pools, resource limitation, and aggression. Indeed, the tadpoles of many poison frog species will attack, kill, and cannibalize other tadpoles. We examined the neural basis of conspecific aggression in Dyeing poison frog (Dendrobates tinctorius) tadpoles by comparing individuals that won aggressive encounters, lost aggressive encounters, or did not engage in a fight. We first compared patterns of generalized neural activity using immunohistochemical detection of phosphorylated ribosomes (pS6) as a proxy for neural activation associated with behavior. We found increased neural activity in the medial pallium and preoptic area of loser tadpoles, suggesting the amphibian homologs of the mammalian hippocampus and preoptic area may facilitate loser-associated behaviors. Nonapeptides (arginine vasotocin and mesotocin) and dopamine have been linked to aggression in other vertebrates and are located in the preoptic area. We next examined neural activity specifically in nonapeptide- and tyrosine-hydroxylase-positive cells using double-label immunohistochemistry. We found increased neural activity specifically in the preoptic area nonapeptide neurons of winners, whereas we found no differences in activity of dopaminergic cells among behavioral groups. Our findings suggest the neural correlates of aggression in poison frog tadpoles are similar to neural mechanisms mediating aggression in adults and juveniles of other vertebrate taxa.


2020 ◽  
Author(s):  
Marie Amalric ◽  
Jessica F. Cantlon

AbstractA major goal of human neuroscience is to understand how the brain functions in the real world, and to measure neural processes under naturalistic conditions that are more ecologically valid than traditional laboratory tasks. A critical step toward this goal is understanding how neural activity during real world naturalistic tasks relates to neural activity in more traditional laboratory tasks. In the present study, we used intersubject correlations to locate reliable stimulus-driven neural processes among children and adults in naturalistic and laboratory versions of a mathematics task that shared the same content. We show that relative to a control condition with grammatical content, naturalistic and simplified mathematics tasks evoked overlapping activation within brain regions previously associated with math semantics. We further examined the temporal properties of children’s neural responses during the naturalistic and laboratory tasks to determine whether temporal patterns of neural activity change over development, or dissociate based on semantic or task content. We introduce a rather novel measure, not yet used in fMRI studies of child learning: neural multiscale entropy. In addition to showing new evidence of naturalistic mathematics processing in the developing brain, we show that neural maturity and neural entropy are two independent but complementary markers of functional brain development. We discuss the implications of these results for the development of neural complexity in children.


2016 ◽  
Vol 113 (51) ◽  
pp. E8306-E8315 ◽  
Author(s):  
Alex T. L. Leong ◽  
Russell W. Chan ◽  
Patrick P. Gao ◽  
Ying-Shing Chan ◽  
Kevin K. Tsia ◽  
...  

One challenge in contemporary neuroscience is to achieve an integrated understanding of the large-scale brain-wide interactions, particularly the spatiotemporal patterns of neural activity that give rise to functions and behavior. At present, little is known about the spatiotemporal properties of long-range neuronal networks. We examined brain-wide neural activity patterns elicited by stimulating ventral posteromedial (VPM) thalamo-cortical excitatory neurons through combined optogenetic stimulation and functional MRI (fMRI). We detected robust optogenetically evoked fMRI activation bilaterally in primary visual, somatosensory, and auditory cortices at low (1 Hz) but not high frequencies (5–40 Hz). Subsequent electrophysiological recordings indicated interactions over long temporal windows across thalamo-cortical, cortico-cortical, and interhemispheric callosal projections at low frequencies. We further observed enhanced visually evoked fMRI activation during and after VPM stimulation in the superior colliculus, indicating that visual processing was subcortically modulated by low-frequency activity originating from VPM. Stimulating posteromedial complex thalamo-cortical excitatory neurons also evoked brain-wide blood-oxygenation-level–dependent activation, although with a distinct spatiotemporal profile. Our results directly demonstrate that low-frequency activity governs large-scale, brain-wide connectivity and interactions through long-range excitatory projections to coordinate the functional integration of remote brain regions. This low-frequency phenomenon contributes to the neural basis of long-range functional connectivity as measured by resting-state fMRI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Andreas Fink ◽  
Arne Nagels ◽  
Benjamin Straube ◽  
...  

AbstractThe ability to generate humor gives rise to positive emotions and thus facilitate the successful resolution of adversity. Although there is consensus that inhibitory processes might be related to broaden the way of thinking, the neural underpinnings of these mechanisms are largely unknown. Here, we use functional Magnetic Resonance Imaging, a humorous alternative uses task and a stroop task, to investigate the brain mechanisms underlying the emergence of humorous ideas in 24 subjects. Neuroimaging results indicate that greater cognitive control abilities are associated with increased activation in the amygdala, the hippocampus and the superior and medial frontal gyrus during the generation of humorous ideas. Examining the neural mechanisms more closely shows that the hypoactivation of frontal brain regions is associated with an hyperactivation in the amygdala and vice versa. This antagonistic connectivity is concurrently linked with an increased number of humorous ideas and enhanced amygdala responses during the task. Our data therefore suggests that a neural antagonism previously related to the emergence and regulation of negative affective responses, is linked with the generation of emotionally positive ideas and may represent an important neural pathway supporting mental health.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao Lin ◽  
Jiahui Deng ◽  
Kai Yuan ◽  
Qiandong Wang ◽  
Lin Liu ◽  
...  

AbstractThe majority of smokers relapse even after successfully quitting because of the craving to smoking after unexpectedly re-exposed to smoking-related cues. This conditioned craving is mediated by reward memories that are frequently experienced and stubbornly resistant to treatment. Reconsolidation theory posits that well-consolidated memories are destabilized after retrieval, and this process renders memories labile and vulnerable to amnestic intervention. This study tests the retrieval reconsolidation procedure to decrease nicotine craving among people who smoke. In this study, 52 male smokers received a single dose of propranolol (n = 27) or placebo (n = 25) before the reactivation of nicotine-associated memories to impair the reconsolidation process. Craving for smoking and neural activity in response to smoking-related cues served as primary outcomes. Functional magnetic resonance imaging was performed during the memory reconsolidation process. The disruption of reconsolidation by propranolol decreased craving for smoking. Reactivity of the postcentral gyrus in response to smoking-related cues also decreased in the propranolol group after the reconsolidation manipulation. Functional connectivity between the hippocampus and striatum was higher during memory reconsolidation in the propranolol group. Furthermore, the increase in coupling between the hippocampus and striatum positively correlated with the decrease in craving after the reconsolidation manipulation in the propranolol group. Propranolol administration before memory reactivation disrupted the reconsolidation of smoking-related memories in smokers by mediating brain regions that are involved in memory and reward processing. These findings demonstrate the noradrenergic regulation of memory reconsolidation in humans and suggest that adjunct propranolol administration can facilitate the treatment of nicotine dependence. The present study was pre-registered at ClinicalTrials.gov (registration no. ChiCTR1900024412).


2010 ◽  
Vol 21 (7) ◽  
pp. 931-937 ◽  
Author(s):  
C. Nathan DeWall ◽  
Geoff MacDonald ◽  
Gregory D. Webster ◽  
Carrie L. Masten ◽  
Roy F. Baumeister ◽  
...  

Pain, whether caused by physical injury or social rejection, is an inevitable part of life. These two types of pain—physical and social—may rely on some of the same behavioral and neural mechanisms that register pain-related affect. To the extent that these pain processes overlap, acetaminophen, a physical pain suppressant that acts through central (rather than peripheral) neural mechanisms, may also reduce behavioral and neural responses to social rejection. In two experiments, participants took acetaminophen or placebo daily for 3 weeks. Doses of acetaminophen reduced reports of social pain on a daily basis (Experiment 1). We used functional magnetic resonance imaging to measure participants’ brain activity (Experiment 2), and found that acetaminophen reduced neural responses to social rejection in brain regions previously associated with distress caused by social pain and the affective component of physical pain (dorsal anterior cingulate cortex, anterior insula). Thus, acetaminophen reduces behavioral and neural responses associated with the pain of social rejection, demonstrating substantial overlap between social and physical pain.


2007 ◽  
Vol 362 (1481) ◽  
pp. 761-772 ◽  
Author(s):  
Mark D'Esposito

Working memory refers to the temporary retention of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be stored for longer periods of time through active maintenance or rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behaviour. Empirical studies of working memory using neuroscientific techniques, such as neuronal recordings in monkeys or functional neuroimaging in humans, have advanced our knowledge of the underlying neural mechanisms of working memory. This rich dataset can be reconciled with behavioural findings derived from investigating the cognitive mechanisms underlying working memory. In this paper, I review the progress that has been made towards this effort by illustrating how investigations of the neural mechanisms underlying working memory can be influenced by cognitive models and, in turn, how cognitive models can be shaped and modified by neuroscientific data. One conclusion that arises from this research is that working memory can be viewed as neither a unitary nor a dedicated system. A network of brain regions, including the prefrontal cortex (PFC), is critical for the active maintenance of internal representations that are necessary for goal-directed behaviour. Thus, working memory is not localized to a single brain region but probably is an emergent property of the functional interactions between the PFC and the rest of the brain.


Sign in / Sign up

Export Citation Format

Share Document