Assessing the Neural Basis of Uncertainty in Perceptual Category Learning through Varying Levels of Distortion

2011 ◽  
Vol 23 (7) ◽  
pp. 1781-1793 ◽  
Author(s):  
Reka Daniel ◽  
Gerd Wagner ◽  
Kathrin Koch ◽  
Jürgen R. Reichenbach ◽  
Heinrich Sauer ◽  
...  

The formation of new perceptual categories involves learning to extract that information from a wide range of often noisy sensory inputs, which is critical for selecting between a limited number of responses. To identify brain regions involved in visual classification learning under noisy conditions, we developed a task on the basis of the classical dot pattern prototype distortion task [M. I. Posner, Journal of Experimental Psychology, 68, 113–118, 1964]. Twenty-seven healthy young adults were required to assign distorted patterns of dots into one of two categories, each defined by its prototype. Categorization uncertainty was modulated parametrically by means of Shannon's entropy formula and set to the levels of 3, 7, and 8.5 bits/dot within subsets of the stimuli. Feedback was presented after each trial, and two parallel versions of the task were developed to contrast practiced and unpracticed performance within a single session. Using event-related fMRI, areas showing increasing activation with categorization uncertainty and decreasing activation with training were identified. Both networks largely overlapped and included areas involved in visuospatial processing (inferior temporal and posterior parietal areas), areas involved in cognitive processes requiring a high amount of cognitive control (posterior medial wall), and a cortico-striatal–thalamic loop through the body of the caudate nucleus. Activity in the medial prefrontal wall was increased when subjects received negative as compared with positive feedback, providing further evidence for its important role in mediating the error signal. This study characterizes the cortico-striatal network underlying the classification of distorted visual patterns that is directly related to decision uncertainty.

2019 ◽  
Vol 116 (52) ◽  
pp. 26274-26279 ◽  
Author(s):  
Richard A. Andersen ◽  
Tyson Aflalo ◽  
Spencer Kellis

A dramatic example of translational monkey research is the development of neural prosthetics for assisting paralyzed patients. A neuroprosthesis consists of implanted electrodes that can record the intended movement of a paralyzed part of the body, a computer algorithm that decodes the intended movement, and an assistive device such as a robot limb or computer that is controlled by these intended movement signals. This type of neuroprosthetic system is also referred to as a brain–machine interface (BMI) since it interfaces the brain with an external machine. In this review, we will concentrate on BMIs in which microelectrode recording arrays are implanted in the posterior parietal cortex (PPC), a high-level cortical area in both humans and monkeys that represents intentions to move. This review will first discuss the basic science research performed in healthy monkeys that established PPC as a good source of intention signals. Next, it will describe the first PPC implants in human patients with tetraplegia from spinal cord injury. From these patients the goals of movements could be quickly decoded, and the rich number of action variables found in PPC indicates that it is an appropriate BMI site for a very wide range of neuroprosthetic applications. We will discuss research on learning to use BMIs in monkeys and humans and the advances that are still needed, requiring both monkey and human research to enable BMIs to be readily available in the clinic.


2009 ◽  
Vol 40 (7) ◽  
pp. 1183-1192 ◽  
Author(s):  
J. Hall ◽  
H. C. Whalley ◽  
J. W. McKirdy ◽  
R. Sprengelmeyer ◽  
I. M. Santos ◽  
...  

BackgroundA wide range of neuropsychiatric conditions, including schizophrenia and autistic spectrum disorder (ASD), are associated with impairments in social function. Previous studies have shown that individuals with schizophrenia and ASD have deficits in making a wide range of social judgements from faces, including decisions related to threat (such as judgements of approachability) and decisions not related to physical threat (such as judgements of intelligence). We have investigated healthy control participants to see whether there is a common neural system activated during such social decisions, on the basis that deficits in this system may contribute to the impairments seen in these disorders.MethodWe investigated the neural basis of social decision making during judgements of approachability and intelligence from faces in 24 healthy participants using functional magnetic resonance imaging (fMRI). We used conjunction analysis to identify common brain regions activated during both tasks.ResultsActivation of the amygdala, medial prefrontal cortex, inferior prefrontal cortex and cerebellum was seen during performance of both social tasks, compared to simple gender judgements from the same stimuli. Task-specific activations were present in the dorsolateral prefrontal cortex in the intelligence task and in the inferior and middle temporal cortex in the approachability task.ConclusionsThe present study identified a common network of brain regions activated during the performance of two different forms of social judgement from faces. Dysfunction of this network is likely to contribute to the broad-ranging deficits in social function seen in psychiatric disorders such as schizophrenia and ASD.


2016 ◽  
Author(s):  
Virginie Uhlmann ◽  
Pavan Ramdya ◽  
Ricard Delgado-Gonzalo ◽  
Richard Benton ◽  
Michael Unser

AbstractUnderstanding the biological underpinnings of movement and action requires the development of tools for precise, quantitative, and high-throughput measurements of animal behavior. Drosophila melanogaster provides an ideal model for developing such tools: the fly has unparalleled genetic accessibility and depends on a relatively compact nervous system to generate sophisticated limbed behaviors including walking, reaching, grooming, courtship, and boxing. Here we describe a method that uses active contours to semi-automatically track body and leg segments from video image sequences of unmarked, freely behaving Drosophila. We show that this approach is robust to wide variations in video spatial and temporal resolution and that it can be used to measure leg segment motions during a variety of locomotor and grooming behaviors. FlyLimbTracker, the software implementation of this method, is open-source and our approach is generalizable. This opens up the possibility of tracking leg movements in other species by modifications of underlying active contour models.Author SummaryIn terrestrial animals, including humans, fundamental actions like locomotion and grooming emerge from the displacement of multiple limbs through space. Therefore, precise measurements of limb movements are critical for investigating and, ultimately, understanding the neural basis for behavior. The vinegar fly, Drosophila melanogaster, is an attractive animal model for uncovering general principles about limb control since its genome and nervous system are easy to manipulate. However, existing methods for measuring leg movements in freely behaving Drosophila have significant drawbacks: they require complicated experimental setups and provide limited information about each leg. Here we report a new method - and provide its open-source software implementation, FlyLimbTracker - for tracking the body and leg segments of freely behaving flies using only computational image processing approaches. We illustrate the power of this method by tracking fly limbs during five distinct walking and grooming behaviors and from videos across a wide range of spatial and temporal resolutions. Our approach is generalizable, allowing researchers to use and customize our software for limb tracking in Drosophila and in other species.


1997 ◽  
Vol 352 (1360) ◽  
pp. 1401-1409 ◽  
Author(s):  
Giuseppe Vallar

In patients with lesions in the right hemisphere, frequently involving the posterior parietal regions, left–sided somatosensory (and visual and motor) deficits not only reflect a disorder of primary sensory processes, but also have a higher–order component related to a defective spatial representation of the body. This additional factor, related to right brain damage, is clinically relevant: contralesional hemianaesthesia (and hemianopia and hemiplegia) is more frequent in right brain–damaged patients than in patients with damage to the left side of the brain. Three main lines of investigation suggest the existence of this higher–order pathological factor. (i) Right brain–damaged patients with left hemineglect may show physiological evidence of preserved processing of somatosensory stimuli, of which they are not aware. Similar results have been obtained in the visual domain. (ii) Direction–specific vestibular, visual optokinetic and somatosensory or proprioceptive stimulations may displace spatial frames of reference in right brain–damaged patients with left hemineglect, reducing or increasing the extent of the patients’ ipsilesional rightward directional error, and bring about similar directional effects in normal subjects. These stimulations, which may improve or worsen a number of manifestations of the neglect syndrome (such as extrapersonal and personal hemineglect), have similar effects on the severity of left somatosensory deficits (defective detection of tactile stimuli, position sense disorders). However, visuospatial hemineglect and the somatosensory deficits improved by these stimulations are independent, albeit related, disorders. (iii) The severity of left somatosensory deficits is affected by the spatial position of body segments, with reference to the midsagittal plane of the trunk. A general implication of these observations is that spatial (non–somatotopic) levels of representation contribute to corporeal awareness. The neural basis of these spatial frames includes the posterior parietal and the premotor frontal regions. These spatial representations could provide perceptual–premotor interfaces for the organization of movements (e.g. pointing, locomotion) directed towards targets in personal and extrapersonal space. In line with this view, there is evidence that the sensory stimulations that modulate left somatosensory deficits affect left motor disorders in a similar, direction–specific, fashion.


2009 ◽  
Vol 21 (12) ◽  
pp. 2276-2286 ◽  
Author(s):  
Tobias Grossmann ◽  
Teodora Gliga ◽  
Mark H. Johnson ◽  
Denis Mareschal

We measured looking times and ERPs to examine the cognitive and brain bases of perceptual category learning in 6-month-old infants. In Experiment 1, we showed that categorization and exemplar discrimination rely on different cortical processes. Specifically, the repetition of individual exemplars resulted in differential cortical processing at posterior channels at an early stage during object processing (100–300 msec), whereas discriminating among members of different categories was reflected in ERP differences over anterior cortical regions occurring later in time (300–500 msec) than the repetition effects. In Experiment 2, replicating the findings of Study 1, we found that infants engage the same cortical processes to categorize visual objects into basic-level categories, regardless of whether a basic (bird vs. fish) or global level is crossed (birds vs. cars). This pattern of findings is consistent with perceptual accounts of infant categorization [Quinn, P. C., & Eimas, P. D. Perceptual organization and categorization in young infants. In C. Rovee-Collier & L. P. Lipsitt (Eds.), Advances in infancy research ( pp. 1–36). Norwood, NJ: Ablex, 1996] and accords with recent adult neural-level models of perceptual categorization.


Author(s):  
Valentina Gallo ◽  
Honglei Chen ◽  
Neil Pearce

This chapter discusses Parkinson's disease (PD). PD is primarily characterized by motor symptoms; these include bradykinesia with rigidity and/or rest tremor according to the latest diagnostic criteria. Dr James Parkinson noted that the disease came on gradually, beginning in the hands and arms before moving through the rest of the body, and observed the weariness, inconvenience, and anguish it provoked in its victims. Nowadays, an increasingly more prominent role is being given to non-motor symptoms of PD; efforts are accordingly being made to produce a reclassification of clinical subtypes. Parkinsonism is principally divided into primary and secondary types. While potential causes of secondary parkinsonism should always be investigated and, when possible, treated, primary parkinsonism embraces a number of neurodegenerative disorders of multifactorial origin. The most common type of primary parkinsonism is PD. Another group of degenerative disorders is labelled atypical parkinsonism. The designation ‘atypical’ mainly refers to the poor levodopa response and the early manifestation of additional clinical features such as ophthalmoparesis, dysautonomia, apraxia, or dementia. Finally, the differential diagnosis of parkinsonism also encompasses a wide range of rare hereditary degenerative disorders that should be taken into account if the clinical presentation is not typical.


2016 ◽  
Vol 113 (43) ◽  
pp. 12274-12279 ◽  
Author(s):  
Pascal Saker ◽  
Michael J. Farrell ◽  
Gary F. Egan ◽  
Michael J. McKinley ◽  
Derek A. Denton

In humans, drinking replenishes fluid loss and satiates the sensation of thirst that accompanies dehydration. Typically, the volume of water drunk in response to thirst matches the deficit. Exactly how this accurate metering is achieved is unknown; recent evidence implicates swallowing inhibition as a potential factor. Using fMRI, this study investigated whether swallowing inhibition is present after more water has been drunk than is necessary to restore fluid balance within the body. This proposal was tested using ratings of swallowing effort and measuring regional brain responses as participants prepared to swallow small volumes of liquid while they were thirsty and after they had overdrunk. Effort ratings provided unequivocal support for swallowing inhibition, with a threefold increase in effort after overdrinking, whereas addition of 8% (wt/vol) sucrose to water had minimal effect on effort before or after overdrinking. Regional brain responses when participants prepared to swallow showed increases in the motor cortex, prefrontal cortices, posterior parietal cortex, striatum, and thalamus after overdrinking, relative to thirst. Ratings of swallowing effort were correlated with activity in the right prefrontal cortex and pontine regions in the brainstem; no brain regions showed correlated activity with pleasantness ratings. These findings are all consistent with the presence of swallowing inhibition after excess water has been drunk. We conclude that swallowing inhibition is an important mechanism in the overall regulation of fluid intake in humans.


2021 ◽  
pp. 267-284
Author(s):  
Jasmine Ho ◽  
Bigna Lenggenhager

The sense of our body is fundamental to human self-consciousness. Many neurological and psychiatric disorders involve atypical corporeal awareness with symptomatology that might be very heterogeneous, affecting various aspects of the bodily self. A common dichotomy divides disorders of the bodily self into disorders affecting predominantly the body schema and disorders predominantly affecting the body image. Yet, increasing evidence suggests that body schema and body image are mutually dependent, making a clear categorization of most disorders difficult. This interdependence is illustrated with examples of a few selected disorders that encompass an atypical sense of the bodily self. A special focus is placed on underlying neural alterations in various body-related brain regions. While body schema-related disorders might rather be linked to a disruption in the integration of multisensory information into a coherent body representation, especially in premotor and posterior parietal areas, body image disturbances, particularly their affective and cognitive aspects, might be linked to a broader network centred around cortical midline structures that are crucially involved in self-referential processes.


2020 ◽  
Vol 2 (4) ◽  
pp. 14-31
Author(s):  
Élodie Dupey García

This article explores how the Nahua of late Postclassic Mesoamerica (1200–1521 CE) created living and material embodiments of their wind god constructed on the basis of sensory experiences that shaped their conception of this divinized meteorological phenomenon. In this process, they employed chromatic and design devices, based on a wide range of natural elements, to add several layers of meaning to the human, painted, and sculpted supports dressed in the god’s insignia. Through a comparative examination of pre-Columbian visual production—especially codices and sculptures—historical sources mainly written in Nahuatl during the viceregal period, and ethnographic data on indigenous communities in modern Mexico, my analysis targets the body paint and shell jewelry of the anthropomorphic “images” of the wind god, along with the Feathered Serpent and the monkey-inspired embodiments of the deity. This study identifies the centrality of other human senses beyond sight in the conception of the wind god and the making of its earthly manifestations. Constructing these deity “images” was tantamount to creating the wind because they were intended to be visual replicas of the wind’s natural behavior. At the same time, they referred to the identity and agency of the wind god in myths and rituals.


2011 ◽  
Vol 20 (1) ◽  
pp. 161-173
Author(s):  
A.P. Kassatkina

Resuming published and own data, a revision of classification of Chaetognatha is presented. The family Sagittidae Claus & Grobben, 1905 is given a rank of subclass, Sagittiones, characterised, in particular, by the presence of two pairs of sac-like gelatinous structures or two pairs of fins. Besides the order Aphragmophora Tokioka, 1965, it contains the new order Biphragmosagittiformes ord. nov., which is a unique group of Chaetognatha with an unusual combination of morphological characters: the transverse muscles present in both the trunk and the tail sections of the body; the seminal vesicles simple, without internal complex compartments; the presence of two pairs of lateral fins. The only family assigned to the new order, Biphragmosagittidae fam. nov., contains two genera. Diagnoses of the two new genera, Biphragmosagitta gen. nov. (type species B. tarasovi sp. nov. and B. angusticephala sp. nov.) and Biphragmofastigata gen. nov. (type species B. fastigata sp. nov.), detailed descriptions and pictures of the three new species are presented.


Sign in / Sign up

Export Citation Format

Share Document