scholarly journals Heritability of the human connectome: A connectotyping study

2018 ◽  
Vol 2 (2) ◽  
pp. 175-199 ◽  
Author(s):  
Oscar Miranda-Dominguez ◽  
Eric Feczko ◽  
David S. Grayson ◽  
Hasse Walum ◽  
Joel T. Nigg ◽  
...  

Recent progress in resting-state neuroimaging demonstrates that the brain exhibits highly individualized patterns of functional connectivity—a “connectotype.” How these individualized patterns may be constrained by environment and genetics is unknown. Here we ask whether the connectotype is familial and heritable. Using a novel approach to estimate familiality via a machine-learning framework, we analyzed resting-state fMRI scans from two well-characterized samples of child and adult siblings. First we show that individual connectotypes were reliably identified even several years after the initial scanning timepoint. Familial relationships between participants, such as siblings versus those who are unrelated, were also accurately characterized. The connectotype demonstrated substantial heritability driven by high-order systems including the fronto-parietal, dorsal attention, ventral attention, cingulo-opercular, and default systems. This work suggests that shared genetics and environment contribute toward producing complex, individualized patterns of distributed brain activity, rather than constraining local aspects of function. These insights offer new strategies for characterizing individual aberrations in brain function and evaluating heritability of brain networks.

Author(s):  
Toshiki Kusano ◽  
Hiroki Kurashige ◽  
Isao Nambu ◽  
Yoshiya Moriguchi ◽  
Takashi Hanakawa ◽  
...  

AbstractSeveral functional magnetic resonance imaging (fMRI) studies have demonstrated that resting-state brain activity consists of multiple components, each corresponding to the spatial pattern of brain activity induced by performing a task. Especially in a movement task, such components have been shown to correspond to the brain activity pattern of the relevant anatomical region, meaning that the voxels of pattern that are cooperatively activated while using a body part (e.g., foot, hand, and tongue) also behave cooperatively in the resting state. However, it is unclear whether the components involved in resting-state brain activity correspond to those induced by the movement of discrete body parts. To address this issue, in the present study, we focused on wrist and finger movements in the hand, and a cross-decoding technique trained to discriminate between the multi-voxel patterns induced by wrist and finger movement was applied to the resting-state fMRI. We found that the multi-voxel pattern in resting-state brain activity corresponds to either wrist or finger movements in the motor-related areas of each hemisphere of the cerebrum and cerebellum. These results suggest that resting-state brain activity in the motor-related areas consists of the components corresponding to the elementary movements of individual body parts. Therefore, the resting-state brain activity possibly has a finer structure than considered previously.


2021 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Haruki Nishimura ◽  
Maro Machizawa ◽  
Naho Ichikawa ◽  
...  

AbstractNeurofeedback (NF) aptitude, which refers to an individual’s ability to change its brain activity through NF training, has been reported to vary significantly from person to person. The prediction of individual NF aptitudes is critical in clinical NF applications. In the present study, we extracted the resting-state functional brain connectivity (FC) markers of NF aptitude independent of NF-targeting brain regions. We combined the data in fMRI-NF studies targeting four different brain regions at two independent sites (obtained from 59 healthy adults and six patients with major depressive disorder) to collect the resting-state fMRI data associated with aptitude scores in subsequent fMRI-NF training. We then trained the regression models to predict the individual NF aptitude scores from the resting-state fMRI data using a discovery dataset from one site and identified six resting-state FCs that predicted NF aptitude. Next we validated the prediction model using independent test data from another site. The result showed that the posterior cingulate cortex was the functional hub among the brain regions and formed predictive resting-state FCs, suggesting NF aptitude may be involved in the attentional mode-orientation modulation system’s characteristics in task-free resting-state brain activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Lv Han ◽  
Liu Zhaohui ◽  
Yan Fei ◽  
Li Ting ◽  
Zhao Pengfei ◽  
...  

Numerous investigations studying the brain functional activity of the tinnitus patients have indicated that neurological changes are important findings of this kind of disease. However, the pulsatile tinnitus (PT) patients were excluded in previous studies because of the totally different mechanisms of the two subtype tinnitus. The aim of this study is to investigate whether altered baseline brain activity presents in patients with PT using resting-state functional magnetic resonance imaging (rs-fMRI) technique. The present study used unilateral PT patients (n=42) and age-, sex-, and education-matched normal control subjects (n=42) to investigate the changes in structural and amplitude of low-frequency (ALFF) of the brain. Also, we analyzed the relationships between these changes with clinical data of the PT patients. Compared with normal controls, PT patients did not show any structural changes. PT patients showed significant increased ALFF in the bilateral precuneus, and bilateral inferior frontal gyrus (IFG) and decreased ALFF in multiple occipital areas. Moreover, the increased THI score and PT duration was correlated with increased ALFF in precuneus and bilateral IFG. The abnormalities of spontaneous brain activity reflected by ALFF measurements in the absence of structural changes may provide insights into the neural reorganization in PT patients.


2020 ◽  
Author(s):  
Fayyaz Ahmad ◽  
Zunira Saghir ◽  
Namra Aamir ◽  
Turki Abulait ◽  
Safee Ullah Chaudhary ◽  
...  

Schizophrenia is a psychotic brain disorder in which patients exhibit aberrant connectivity between different regions of the brain. Neuroimaging is a state-of-the-art technique that is now increasingly been employed in clinical investigation of Schizophrenia. In the present study, we have used resting-state functional magnetic resonance neuroimaging (rsfMRI) to elucidate the cause-and-effect relationships among four regions of the brain including occipital, temporal, and frontal lobes and hippocampus in Schizophrenia. For that, we have employed independent component analysis, a seed-based temporal correlation analysis, and Granger causality analysis for measuring causal relationships amongst four regions of the brain in schizophrenia patients. Eighteen subjects with nine patients and nine controls were evaluated in the study. Our results show that Schizophrenia patients exhibit significantly different activation patterns across the selected regions of the brain in comparison with the control. In addition to that, we also observed an aberrant causal relationship between these four regions of the brain. In particular, the temporal and frontal lobes of patients with schizophrenia had a significantly lowered causal relationship with the other areas of the brain. Taken together, the study elucidates the dysregulated brain activity in Schizophrenia patients, decodes its causal mapping and provides novel insights towards employment in clinical evaluation of Schizophrenia.


2020 ◽  
Author(s):  
Yameng Gu ◽  
Lucas E. Sainburg ◽  
Sizhe Kuang ◽  
Feng Han ◽  
Jack W. Williams ◽  
...  

AbstractThe brain exhibits highly organized patterns of spontaneous activity as measured by resting-state fMRI fluctuations that are being widely used to assess the brain’s functional connectivity. Some evidence suggests that spatiotemporally coherent waves are a core feature of spontaneous activity that shapes functional connectivity, though this has been difficult to establish using fMRI given the temporal constraints of the hemodynamic signal. Here we investigated the structure of spontaneous waves in human fMRI and monkey electrocorticography. In both species, we found clear, repeatable, and directionally constrained activity waves coursed along a spatial axis approximately representing cortical hierarchical organization. These cortical propagations were closely associated with activity changes in distinct subcortical structures, particularly those related to arousal regulation, and modulated across different states of vigilance. The findings demonstrate a neural origin of spatiotemporal fMRI wave propagation at rest and link it to the principal gradient of resting-state fMRI connectivity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kefan Wang ◽  
Xiaonan Zhang ◽  
Chengru Song ◽  
Keran Ma ◽  
Man Bai ◽  
...  

It is well established that epilepsy is characterized by the destruction of the information capacity of brain network and the interference with information processing in regions outside the epileptogenic focus. However, the potential mechanism remains poorly understood. In the current study, we applied a recently proposed approach on the basis of resting-state fMRI data to measure altered local neural dynamics in mesial temporal lobe epilepsy (mTLE), which represents how long neural information is stored in a local brain area and reflect an ability of information integration. Using resting-state-fMRI data recorded from 36 subjects with mTLE and 36 healthy controls, we calculated the intrinsic neural timescales (INT) of neural signals by summing the positive magnitude of the autocorrelation of the resting-state brain activity. Compared to healthy controls, the INT values were significantly lower in patients in the right orbitofrontal cortices, right insula, and right posterior lobe of cerebellum. Whereas, we observed no statistically significant changes between patients with long- and short-term epilepsy duration or between left-mTLE and right-mTLE. Our study provides distinct insight into the brain abnormalities of mTLE from the perspective of the dynamics of the brain activity, highlighting the significant role of intrinsic timescale in understanding neurophysiological mechanisms. And we postulate that altered intrinsic timescales of neural signals in specific cortical brain areas may be the neurodynamic basis of cognitive impairment and emotional comorbidities in mTLE patients.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Emilia Sbardella ◽  
Nikolaos Petsas ◽  
Francesca Tona ◽  
Patrizia Pantano

Brain functional connectivity (FC) is defined as the coherence in the activity between cerebral areas under a task or in the resting-state (RS). By applying functional magnetic resonance imaging (fMRI), RS FC shows several patterns which define RS brain networks (RSNs) involved in specific functions, because brain function is known to depend not only on the activity within individual regions, but also on the functional interaction of different areas across the whole brain. Region-of-interest analysis and independent component analysis are the two most commonly applied methods for RS investigation. Multiple sclerosis (MS) is characterized by multiple lesions mainly affecting the white matter, determining both structural and functional disconnection between various areas of the central nervous system. The study of RS FC in MS is mainly aimed at understanding alterations in the intrinsic functional architecture of the brain and their role in disease progression and clinical impairment. In this paper, we will examine the results obtained by the application of RS fMRI in different multiple sclerosis (MS) phenotypes and the correlations of FC changes with clinical features in this pathology. The knowledge of RS FC changes may represent a substantial step forward in the MS research field, both for clinical and therapeutic purposes.


2015 ◽  
Vol 112 (17) ◽  
pp. E2235-E2244 ◽  
Author(s):  
Anish Mitra ◽  
Abraham Z. Snyder ◽  
Tyler Blazey ◽  
Marcus E. Raichle

It has been widely reported that intrinsic brain activity, in a variety of animals including humans, is spatiotemporally structured. Specifically, propagated slow activity has been repeatedly demonstrated in animals. In human resting-state fMRI, spontaneous activity has been understood predominantly in terms of zero-lag temporal synchrony within widely distributed functional systems (resting-state networks). Here, we use resting-state fMRI from 1,376 normal, young adults to demonstrate that multiple, highly reproducible, temporal sequences of propagated activity, which we term “lag threads,” are present in the brain. Moreover, this propagated activity is largely unidirectional within conventionally understood resting-state networks. Modeling experiments show that resting-state networks naturally emerge as a consequence of shared patterns of propagation. An implication of these results is that common physiologic mechanisms may underlie spontaneous activity as imaged with fMRI in humans and slowly propagated activity as studied in animals.


2019 ◽  
Author(s):  
Takashi Nakano ◽  
Masahiro Takamura ◽  
Naho Ichikawa ◽  
Go Okada ◽  
Yasumasa Okamoto ◽  
...  

AbstractResting-state fMRI has the potential to find abnormal behavior in brain activity and to diagnose patients with depression. However, resting-state fMRI has a bias depending on the scanner site, which makes it difficult to diagnose depression at a new site. In this paper, we propose methods to improve the performance of the diagnosis of major depressive disorder (MDD) at an independent site by reducing the site bias effects using regression. For this, we used a subgroup of healthy subjects of the independent site to regress out site bias. We further improved the classification performance of patients with depression by focusing on melancholic depressive disorder. Our proposed methods would be useful to apply depression classifiers to subjects at completely new sites.


2021 ◽  
Author(s):  
Yameng Gu ◽  
Lucas E Sainburg ◽  
Sizhe Kuang ◽  
Feng Han ◽  
Jack W Williams ◽  
...  

Abstract The brain exhibits highly organized patterns of spontaneous activity as measured by resting-state functional magnetic resonance imaging (fMRI) fluctuations that are being widely used to assess the brain’s functional connectivity. Some evidence suggests that spatiotemporally coherent waves are a core feature of spontaneous activity that shapes functional connectivity, although this has been difficult to establish using fMRI given the temporal constraints of the hemodynamic signal. Here, we investigated the structure of spontaneous waves in human fMRI and monkey electrocorticography. In both species, we found clear, repeatable, and directionally constrained activity waves coursed along a spatial axis approximately representing cortical hierarchical organization. These cortical propagations were closely associated with activity changes in distinct subcortical structures, particularly those related to arousal regulation, and modulated across different states of vigilance. The findings demonstrate a neural origin of spatiotemporal fMRI wave propagation at rest and link it to the principal gradient of resting-state fMRI connectivity.


Sign in / Sign up

Export Citation Format

Share Document