Relative importance of reproductive life-history paths in one population of the lizard Sceloporus grammicus

2012 ◽  
Vol 33 (3-4) ◽  
pp. 401-413
Author(s):  
J. Jaime Zúñiga-Vega ◽  
Claudia Molina-Zuluaga ◽  
Oswaldo Hernández-Gallegos ◽  
Norma L. Manríquez-Morán ◽  
Felipe Rodríguez-Romero ◽  
...  

Life cycles of living organisms are composed of distinct sub-cycles that represent alternative life-history paths with differential impact on fitness. We identified three reproductive life-history paths (referred here as loops) in the life cycle of one population of the viviparous lizard Sceloporus grammicus. We evaluated the relative importance of each one of these reproductive paths for the population fitness of these lizards during a 5-year period. The first path corresponded to early reproduction and included survival to maturity and early fecundity. The second path was late reproduction loop and included survival to larger adult sizes with the corresponding fecundity rate. The third was composed of those individuals skipping the small adult stage within a single year, reaching larger sizes early in life with their corresponding larger litters (fast growth loop). To examine the potential effects of environmental factors on the relative contribution of these alternative life-history paths to fitness, we estimated stage-specific survival and growth as functions of annual temperature and rainfall. Using these estimates of vital rates we constructed annual population projection matrices. Then, using demographic elasticities and loop analysis, we calculated the relative contribution of each of the three reproductive paths to the population growth rates. Our results showed that the early reproduction loop is the path with the greatest relative contribution to the population growth rate in most years. However, increases in environmental temperature resulted in higher population growth rates and in greater contribution of the fast growth path to the overall fitness of these lizards.

2008 ◽  
Vol 29 (2) ◽  
pp. 245-256 ◽  
Author(s):  
Carissa Jones ◽  
Isaac Rojas-González ◽  
Julio Lemos-Espinal ◽  
Jaime Zúñiga-Vega

Abstract There appears to be variation in life-history strategies even between populations of the same species. For ectothermic organisms such as lizards, it has been predicted that demographic and life-history traits should differ consistently between temperate and tropical populations. This study compares the demographic strategies of a temperate and a tropical population of the lizard Xenosaurus platyceps. Population growth rates in both types of environments indicated populations in numerical equilibrium. Of the two populations, we found that the temperate population experiences lower adult mortality. The relative importance (estimated as the relative contribution to population growth rate) of permanence and of the adult/reproductive size classes is higher in the temperate population. In contrast, the relative importance for average fitness of fecundity and growth is higher in the tropical population. These results are consistent with the theoretical frameworks about life-historical differences among tropical and temperate lizard populations.


2014 ◽  
Vol 71 (8) ◽  
pp. 1198-1208 ◽  
Author(s):  
Douglas C. Braun ◽  
John D. Reynolds

Understanding linkages among life history traits, the environment, and population dynamics is a central goal in ecology. We compared 15 populations of sockeye salmon (Oncorhynchus nerka) to test general hypotheses for the relative importance of life history traits and environmental conditions in explaining variation in population dynamics. We used life history traits and habitat variables as covariates in mixed-effect Ricker models to evaluate the support for correlates of maximum population growth rates, density dependence, and variability in dynamics among populations. We found dramatic differences in the dynamics of populations that spawn in a small geographical area. These differences among populations were related to variation in habitats but not life history traits. Populations that spawned in deep water had higher and less variable population growth rates, and populations inhabiting streams with larger gravels experienced stronger negative density dependence. These results demonstrate, in these populations, the relative importance of environmental conditions and life histories in explaining population dynamics, which is rarely possible for multiple populations of the same species. Furthermore, they suggest that local habitat variables are important for the assessment of population status, especially when multiple populations with different dynamics are managed as aggregates.


2008 ◽  
Vol 86 (12) ◽  
pp. 1397-1409 ◽  
Author(s):  
J. J. Zúñiga-Vega ◽  
F. R. Méndez-de la Cruz ◽  
O. Cuellar

We conducted a 5 year demographic study in one population of the viviparous lizard Sceloporus grammicus Wiegmann, 1828 in central México. The population was structured in three size classes (juveniles, small adults, and asymptotic adults) for which we estimated annual survival and fecundity rates. A population projection matrix was constructed for each annual transition. All of them resulted in finite rates of population growth (λ) that, although variable from year to year (from 0.808 to 1.065), were not significantly different than unity, indicating population stability. Elasticity analysis revealed that survival staying in the same size class was the demographic process that made the greatest contribution to λ values in most years. Similarly, the stasis of large adults was the vital rate with the highest relative importance for population persistence. To incorporate the observed yearly variation in long-term population projections, we used a mean matrix, a stochastic simulation, and a resampling procedure. All these resulted in long-term population growth rates that were not significantly different than unity. Our results indicate overall demographic stability for the studied population of S. grammicus.


<em>Abstract.</em> —Seabirds become mature at a late age, experience low annual fecundity, often refrain from breeding, and enjoy annual adult survival rates as high as 98%. This suite of life history characteristics limits the capacity for seabird populations to recover quickly from major perturbations, and presents important conservation challenges. Concern over anthropogenic impacts on seabird populations has led to the initiation of long-term field programs to monitor seabird reproductive performance and population dynamics. In addition, seabirds have been recognized as potentially useful and economical indicators of the state of the marine environment and, in particular, the status of commercially important prey stocks. This paper reviews demographic and life history attributes of seabird populations and uses this information to explore the consequences of longevity from the respective standpoints of conservation and monitoring goals. Analysis of a simplified life cycle model reveals that maximum potential population growth rates (λ) under ideal circumstances fall within the range of 1.03–1.12 for most species, though growth rates realized in nature will always be lower. Elasticity analysis confirms that seabird population growth rates are extremely sensitive to small variations in adult survival rates, and dictates that survival monitoring should be considered an essential component of conservation strategies. As in other organisms with long life spans, ecological and physiological costs of reproduction are expected to figure prominently in seabird reproductive decisions. Consequently, understanding how seabirds allocate reproductive effort in response to varying environmental conditions is an important prerequisite for correctly interpreting field data from monitoring studies.


2017 ◽  
Author(s):  
Seema Nayan Sheth ◽  
Amy Lauren Angert

ABSTRACTAs climate change shifts species' climatic envelopes across the landscape, equilibrium between geographic ranges and niches is likely diminishing due to time lags in demography and dispersal. If a species' range and niche are out of equilibrium, then population performance should decrease from cool, “leading” range edges, where populations are expanding into recently ameliorated habitats, to warm, “trailing” range edges, where populations are contracting from newly unsuitable areas. Population contraction signals that compensatory changes in vital rates are insufficient to buffer population growth from deteriorating environments. Life history theory predicts tradeoffs between fast development, high reproduction, and short longevity at low latitudes and slow development, less frequent but multiple bouts of reproduction, and long lifespan at high latitudes. If demographic compensation is driven by life history evolution, compensatory negative correlations in vital rates may be associated with this fast-slow continuum. An outstanding question is whether range limits and range contractions reflect inadequate compensatory life history shifts along environmental gradients, causing population growth rates to fall below replacement levels at range edges. We surveyed demography of 32 populations of the scarlet monkeyflower (Erythranthe cardinalis) spanning 11° latitude in western North America and used integral projection models to infer population dynamics and assess demographic compensation. Population growth rates decreased from north to south, consistent with leading-trailing dynamics. Southern populations are declining due to reduced survival, growth, and recruitment, despite compensatory increases in reproduction and faster life history characteristics, suggesting that demographic compensation will not rescue populations at the trailing range edge.SIGNIFICANCE STATEMENTWhile climate change is causing poleward shifts in many species' geographic distributions, some species' ranges have remained stable, particularly at low-latitude limits. One explanation for why some species' ranges have not shifted is demographic compensation, whereby declines in some demographic processes are offset by increases in others, potentially buffering populations from extinction. However, we have limited understanding of whether demographic compensation can prevent collapse of populations facing climate change. We examined the demography of natural populations of a perennial herb spanning a broad latitudinal gradient. Despite increases in reproduction, low-latitude populations declined due to diminished survival, growth, and recruitment. Thus, demographic compensation may not be sufficient to rescue low-latitude, warm-edge populations from extinction.


2021 ◽  
Author(s):  
John Jackson ◽  
Christie Le Coeur ◽  
Owen R Jones

AbstractWith the looming threat of abrupt ecological disruption due to a changing climate, predicting which species are most vulnerable to environmental change is critical. The life-history of a species is a promising candidate for explaining differences in climate-change responses, but we now need data linking population change, weather and life-history to explore these predictions. Here, we use long-term abundance records from 157 species of terrestrial mammals to investigate the link between weather and annual population growth rates. Overall, we found no consistent effect of temperature or precipitation anomalies on annual population growth rates, but there was variability in weather responses for populations within a species. Crucially, however, long-lived mammals with smaller litter sizes had responses with a reduced absolute magnitude compared to their shorter-living counterparts with larger litters. These results highlight the role of species-level life-history in driving responses to the environment.


Sign in / Sign up

Export Citation Format

Share Document