Demography of the lizard Sceloporus grammicus: exploring temporal variation in population dynamics

2008 ◽  
Vol 86 (12) ◽  
pp. 1397-1409 ◽  
Author(s):  
J. J. Zúñiga-Vega ◽  
F. R. Méndez-de la Cruz ◽  
O. Cuellar

We conducted a 5 year demographic study in one population of the viviparous lizard Sceloporus grammicus Wiegmann, 1828 in central México. The population was structured in three size classes (juveniles, small adults, and asymptotic adults) for which we estimated annual survival and fecundity rates. A population projection matrix was constructed for each annual transition. All of them resulted in finite rates of population growth (λ) that, although variable from year to year (from 0.808 to 1.065), were not significantly different than unity, indicating population stability. Elasticity analysis revealed that survival staying in the same size class was the demographic process that made the greatest contribution to λ values in most years. Similarly, the stasis of large adults was the vital rate with the highest relative importance for population persistence. To incorporate the observed yearly variation in long-term population projections, we used a mean matrix, a stochastic simulation, and a resampling procedure. All these resulted in long-term population growth rates that were not significantly different than unity. Our results indicate overall demographic stability for the studied population of S. grammicus.

2002 ◽  
Vol 357 (1425) ◽  
pp. 1185-1195 ◽  
Author(s):  
Bernt–Erik Sæther ◽  
Steinar Engen

A central question in population ecology is to understand why population growth rates differ over time. Here, we describe how the long–term growth of populations is not only influenced by parameters affecting the expected dynamics, for example form of density dependence and specific population growth rate, but is also affected by environmental and demographic stochasticity. Using long–term studies of fluctuations of bird populations, we show an interaction between the stochastic and the deterministic components of the population dynamics: high specific growth rates at small densities r 1 are typically positively correlated with the environmental variance σ e 2 . Furthermore, θ, a single parameter describing the form of the density regulation in the theta–logistic density–regulation model, is negatively correlated with r 1 . These patterns are in turn correlated with interspecific differences in life–history characteristics. Higher specific growth rates, larger stochastic effects on the population dynamics and stronger density regulation at small densities are found in species with large clutch sizes or high adult mortality rates than in long–lived species. Unfortunately, large uncertainties in parameter estimates, as well as strong stochastic effects on the population dynamics, will often make even short–term population projections unreliable. We illustrate that the concept of population prediction interval can be useful in evaluating the consequences of these uncertainties in the population projections for the choice of management actions.


2022 ◽  
Vol 2 ◽  
Author(s):  
Lalasia Bialic-Murphy ◽  
Tiffany M. Knight ◽  
Kapua Kawelo ◽  
Orou G. Gaoue

The reintroduction of rare species in natural preserves is a commonly used restoration strategy to prevent species extinction. An essential first step in planning successful reintroductions is identifying which life stages (e.g., seeds or large adults) should be used to establish these new populations. Following this initial establishment phase, it is necessary to determine the level of survival, growth, and recruitment needed to maintain population persistence over time and identify management actions that will achieve these goals. In this 5-year study, we projected the short- and long-term population growth rates of a critically endangered long-lived shrub, Delissea waianaeensis. Using this model system, we show that reintroductions established with mature individuals have the lowest probability of quasi-population extinction (10 individuals) and the highest increase in population abundance. However, our results also demonstrate that short-term increases in population abundances are overly optimistic of long-term outcomes. Using long-term stochastic model simulations, we identified the level of natural seedling regeneration needed to maintain a positive population growth rate over time. These findings are relevant for planning future reintroduction efforts for long-lived species and illustrate the need to forecast short- and long-term population responses when evaluating restoration success.


2012 ◽  
Vol 33 (3-4) ◽  
pp. 401-413
Author(s):  
J. Jaime Zúñiga-Vega ◽  
Claudia Molina-Zuluaga ◽  
Oswaldo Hernández-Gallegos ◽  
Norma L. Manríquez-Morán ◽  
Felipe Rodríguez-Romero ◽  
...  

Life cycles of living organisms are composed of distinct sub-cycles that represent alternative life-history paths with differential impact on fitness. We identified three reproductive life-history paths (referred here as loops) in the life cycle of one population of the viviparous lizard Sceloporus grammicus. We evaluated the relative importance of each one of these reproductive paths for the population fitness of these lizards during a 5-year period. The first path corresponded to early reproduction and included survival to maturity and early fecundity. The second path was late reproduction loop and included survival to larger adult sizes with the corresponding fecundity rate. The third was composed of those individuals skipping the small adult stage within a single year, reaching larger sizes early in life with their corresponding larger litters (fast growth loop). To examine the potential effects of environmental factors on the relative contribution of these alternative life-history paths to fitness, we estimated stage-specific survival and growth as functions of annual temperature and rainfall. Using these estimates of vital rates we constructed annual population projection matrices. Then, using demographic elasticities and loop analysis, we calculated the relative contribution of each of the three reproductive paths to the population growth rates. Our results showed that the early reproduction loop is the path with the greatest relative contribution to the population growth rate in most years. However, increases in environmental temperature resulted in higher population growth rates and in greater contribution of the fast growth path to the overall fitness of these lizards.


2008 ◽  
Vol 29 (2) ◽  
pp. 245-256 ◽  
Author(s):  
Carissa Jones ◽  
Isaac Rojas-González ◽  
Julio Lemos-Espinal ◽  
Jaime Zúñiga-Vega

Abstract There appears to be variation in life-history strategies even between populations of the same species. For ectothermic organisms such as lizards, it has been predicted that demographic and life-history traits should differ consistently between temperate and tropical populations. This study compares the demographic strategies of a temperate and a tropical population of the lizard Xenosaurus platyceps. Population growth rates in both types of environments indicated populations in numerical equilibrium. Of the two populations, we found that the temperate population experiences lower adult mortality. The relative importance (estimated as the relative contribution to population growth rate) of permanence and of the adult/reproductive size classes is higher in the temperate population. In contrast, the relative importance for average fitness of fecundity and growth is higher in the tropical population. These results are consistent with the theoretical frameworks about life-historical differences among tropical and temperate lizard populations.


2015 ◽  
Vol 42 (2) ◽  
pp. 185 ◽  
Author(s):  
Lise Ruffino ◽  
Diane Zarzoso-Lacoste ◽  
Eric Vidal

Bird conservation is nowadays a strong driving force for prioritising rodent eradications, but robust quantitative estimates of impacts are needed to ensure cost-effectiveness of management operations. Here, we review the published literature to investigate on what methodological basis rodent effects on island bird communities have been evaluated for the past six decades. We then discuss the advantages and limitations of each category of methods for the detection and quantification of impacts, and end with some recommendations on how to strengthen current approaches and extend our knowledge on the mechanisms of impacts. Impact studies (152 studies considered) emphasised seabirds (67%), black rats (63%) and the Pacific Ocean (57%). Among the most commonly used methods to study rodent impacts on birds were the observation of dead eggs or empty nests while monitoring bird breeding success, and the analyses of rodent diets, which can both lead to misleading conclusions if the data are not supported by direct field evidence of rodent predation. Direct observations of rodent–bird interactions (19% of studies) are still poorly considered despite their potential to reveal cryptic behaviours and shed light on the mechanisms of impacts. Rodent effects on birds were most often measured as a change or difference in bird breeding parameters (74% of studies), while estimates of bird population growth rates (4%) are lacking. Based on the outcomes of this literature review, we highlight the need for collecting unbiased population-level estimates of rodent impacts, which are essential prerequisites for predicting bird population growth scenarios and prioritising their conservation needs. This could be achieved by a more systematic integration of long-term monitoring of bird populations into rodent management operations and modelling bird population dynamics. We also strongly recommend including various complementary methods in impact assessment strategies to unravel complex interactions between rodents and birds and avoid faulty evidence. Finally, more research should be devoted to a better understanding of the cases of non-impacts (i.e. long-term coexistence) and those impacts mediated by mechanisms other than predation and ecosystem-level processes.


1973 ◽  
Vol 30 (2) ◽  
pp. 195-199 ◽  
Author(s):  
Terry A. Haines

The value of RNA–DNA ratio as a measure of long-term growth of fish populations under semi-natural conditions and when subjected to environmental manipulations was determined. Populations of carp and smallmouth bass of known age distribution were established in artificial ponds maintained at two fertility levels. After 15 months, population growth rates (as percent increase in weight) and RNA–DNA ratios of muscle tissue from selected fish were measured. Each species exhibited a range of population growth rates. The relation between population growth rate and individual fish RNA–DNA ratio for each species was significant. When reproduction occurred, the relation was not significant unless young-of-the-year fish were excluded from population growth rate calculations. Age of fish was also found to have an important effect on RNA–DNA ratio, with the ratio being higher in younger fish.RNA–DNA ratio can be a reliable indicator of long-term population growth in fish when population age structure is known and recruitment is controlled. The method has potential for use in detecting response to environmental changes before growth rate changes become severe.


2014 ◽  
Vol 71 (8) ◽  
pp. 1198-1208 ◽  
Author(s):  
Douglas C. Braun ◽  
John D. Reynolds

Understanding linkages among life history traits, the environment, and population dynamics is a central goal in ecology. We compared 15 populations of sockeye salmon (Oncorhynchus nerka) to test general hypotheses for the relative importance of life history traits and environmental conditions in explaining variation in population dynamics. We used life history traits and habitat variables as covariates in mixed-effect Ricker models to evaluate the support for correlates of maximum population growth rates, density dependence, and variability in dynamics among populations. We found dramatic differences in the dynamics of populations that spawn in a small geographical area. These differences among populations were related to variation in habitats but not life history traits. Populations that spawned in deep water had higher and less variable population growth rates, and populations inhabiting streams with larger gravels experienced stronger negative density dependence. These results demonstrate, in these populations, the relative importance of environmental conditions and life histories in explaining population dynamics, which is rarely possible for multiple populations of the same species. Furthermore, they suggest that local habitat variables are important for the assessment of population status, especially when multiple populations with different dynamics are managed as aggregates.


Author(s):  
Giovanni Andrea Cornia

This chapter reviews population trends over the last two hundred years and population projections to the end of this century. In 2100 the world population will have stabilized but its geographical distribution will have substantially changed compared to 2015. The chapter then discusses the five stages of the demographic transition, and different neo-Malthusian and non-Malthusian theories of the relation between population growth and economic development. It emphasizes in particular the effects of rapid population growth on land and resource availability, human capital formation, population quality, the accumulation of physical capital, employment, wages, and income inequality. The effects of rapid population growth rate over a given period were found to change in line with the population size and density at the beginning of the period considered.


2014 ◽  
Vol 42 (1) ◽  
pp. 20-30 ◽  
Author(s):  
TAMARA M. WONG ◽  
TAMARA TICKTIN

SUMMARYDemographic comparisons between wild and restored populations of at-risk plant species can reveal key management strategies for effective conservation, but few such studies exist. This paper evaluates the potential restoration success ofAlyxia stellata, a Hawaiian vine. Stage-structured matrix projection models that compared long-term and transient dynamics of wild versus restoredA. stellatapopulations, and restored populations under different levels of canopy cover, were built from demographic data collected over a four year period. Stochastic models of wild populations projected stable or slightly declining long-term growth rates depending on frequency of dry years. Projected long-term population growth rates of restored populations were significantly higher in closed than open canopy conditions, but indicated population decline under both conditions. Life table response experiments illustrated that lower survival rates, especially of small adults and juveniles, contributed to diminished population growth rates in restored populations. Transient analyses for restored populations projected short-term decline occurring even faster than predicted by asymptotic dynamics. Restored populations will not be viable over the long term under conditions commonly found in restoration projects and interventions will likely be necessary. This study illustrates how the combination of long-term population modelling and transient analyses can be effective in providing relevant information for plant demographers and restoration practitioners to promote self-sustaining native populations, including under future climates.


2014 ◽  
Author(s):  
Emilio M Bruna ◽  
Thiago J Izzo ◽  
Brian D Inouye ◽  
Heraldo L Vasconcelos

Mutualisms play a central role in the origin and maintenance of biodiversity. Because many mutualisms have strong demographic effects, interspecific variation in partner quality could have important consequences for population dynamics. Nevertheless, few studies have quantified how a mutualist partner influences population growth rates, and still fewer have compared the demographic impacts of multiple partner species. We used integral projection models parameterized with three years of census data to compare the demographic effects of two ant species – Crematogaster laevis and Pheidole minutula – on populations of the Amazonian ant-plant Maieta guianensis. Estimated population growth rates were positive (i.e., λ>1) for all ant-plant combinations. However, populations with only Pheidole minutula had the highest asymptotic growth rate (λ=1.23), followed by those colonized by Crematogaster laevis (λ=1.16), and in which the partner ant alternated between C. laevis and P. minutula at least once during our study (λ=1.15). Our results indicate that the short-term superiority of a mutualist partner – in this system P. minutula is a better defender of plants against herbivores than C. laevis – can have long-term demographic consequences. Furthermore, the demographic effects of switching among alternative partners appear to be context-dependent, with no benefits to plants hosting C. laevis but a major cost of switching to plants hosting P. minutula. Our results underscore the importance of expanding the study of mutualisms beyond the study of pair-wise interactions to consider the demographic costs and benefits of interacting with different, and multiple, potential partners.


Sign in / Sign up

Export Citation Format

Share Document