scholarly journals Incorporation and metabolism of fatty acids by desaturation and elongation in the nematode, Panagrellus redivivus

Nematology ◽  
2004 ◽  
Vol 6 (6) ◽  
pp. 783-795 ◽  
Author(s):  
Klaus Becker ◽  
James Dick ◽  
Douglas Tocher ◽  
Christian Schlechtriem

AbstractThe free-living nematode Panagrellus redivivus can be mass produced in monoxenic solid culture on Saccharomyces cerevisiae and therefore could be useful as a live food for marine fish or crustacean larvae in the rapidly expanding aquaculture industry. However, this will depend on their lipid and fatty acid composition and so this was investigated in mass produced P. redivivus grown on S. cerevisiae in three different media. Live nematodes were also incubated with [1-14C]-labelled fatty acids and the desaturation and elongation of the fatty acids were determined. The combined results from the growth trials on different media and the metabolic studies with labelled fatty acids indicated the presence of Δ9, Δ12, Δ6 and Δ5 fatty acid desaturase activities, and elongase activities active towards C18, C16 and shorter chain fatty acids. The presence of Δ15, and therefore the ability to produce n-3 polyunsaturated fatty acids, was suggested by the compositional data, but could not be conclusively established from metabolic studies.

1985 ◽  
Vol 54 (03) ◽  
pp. 563-569 ◽  
Author(s):  
M K Salo ◽  
E Vartiainen ◽  
P Puska ◽  
T Nikkari

SummaryPlatelet aggregation and its relation to fatty acid composition of platelets, plasma and adipose tissue was determined in 196 randomly selected, free-living, 40-49-year-old men in two regions of Finland (east and southwest) with a nearly twofold difference in the IHD rate.There were no significant east-southwest differences in platelet aggregation induced with ADP, thrombin or epinephrine. ADP-induced platelet secondary aggregation showed significant negative associations with all C20-C22 ω3-fatty acids in platelets (r = -0.26 - -0.40) and with the platelet 20: 5ω3/20: 4ω 6 and ω3/ ω6 ratios, but significant positive correlations with the contents of 18:2 in adipose tissue (r = 0.20) and plasma triglycerides (TG) (r = 0.29). Epinephrine-induced aggregation correlated negatively with 20: 5ω 3 in plasma cholesteryl esters (CE) (r = -0.23) and TG (r = -0.29), and positively with the total percentage of saturated fatty acids in platelets (r = 0.33), but had no significant correlations with any of the ω6-fatty acids. Thrombin-induced aggregation correlated negatively with the ω3/6ω ratio in adipose tissue (r = -0.25) and the 20: 3ω6/20: 4ω 6 ratio in plasma CE (r = -0.27) and free fatty acids (FFA) (r = -0.23), and positively with adipose tissue 18:2 (r = 0.23) and 20:4ω6 (r = 0.22) in plasma phospholipids (PL).The percentages of prostanoid precursors in platelet lipids, i. e. 20: 3ω 6, 20: 4ω 6 and 20 :5ω 3, correlated best with the same fatty acids in plasma CE (r = 0.32 - 0.77) and PL (r = 0.28 - 0.74). Platelet 20: 5ω 3 had highly significant negative correlations with the percentage of 18:2 in adipose tissue and all plasma lipid fractions (r = -0.35 - -0.44).These results suggest that, among a free-living population, relatively small changes in the fatty acid composition of plasma and platelets may be reflected in significant differences in platelet aggregation, and that an increase in linoleate-rich vegetable fat in the diet may not affect platelet function favourably unless it is accompanied by an adequate supply of ω3 fatty acids.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zolian S. Zoong Lwe ◽  
Ruth Welti ◽  
Daniel Anco ◽  
Salman Naveed ◽  
Sachin Rustgi ◽  
...  

AbstractUnderstanding the changes in peanut (Arachis hypogaea L.) anther lipidome under heat stress (HT) will aid in understanding the mechanisms of heat tolerance. We profiled the anther lipidome of seven genotypes exposed to ambient temperature (AT) or HT during flowering. Under AT and HT, the lipidome was dominated by phosphatidylcholine (PC), phosphatidylethanolamine (PE), and triacylglycerol (TAG) species (> 50% of total lipids). Of 89 lipid analytes specified by total acyl carbons:total carbon–carbon double bonds, 36:6, 36:5, and 34:3 PC and 34:3 PE (all contain 18:3 fatty acid and decreased under HT) were the most important lipids that differentiated HT from AT. Heat stress caused decreases in unsaturation indices of membrane lipids, primarily due to decreases in highly-unsaturated lipid species that contained 18:3 fatty acids. In parallel, the expression of Fatty Acid Desaturase 3-2 (FAD3-2; converts 18:2 fatty acids to 18:3) decreased under HT for the heat-tolerant genotype SPT 06-07 but not for the susceptible genotype Bailey. Our results suggested that decreasing lipid unsaturation levels by lowering 18:3 fatty-acid amount through reducing FAD3 expression is likely an acclimation mechanism to heat stress in peanut. Thus, genotypes that are more efficient in doing so will be relatively more tolerant to HT.


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1983-1990 ◽  
Author(s):  
Takahiro Oura ◽  
Susumu Kajiwara

Fungi, like plants, are capable of producing the 18-carbon polyunsaturated fatty acids linoleic acid and α-linolenic acid. These fatty acids are synthesized by catalytic reactions of Δ12 and ω3 fatty acid desaturases. This paper describes the first cloning and functional characterization of a yeast ω3 fatty acid desaturase gene. The deduced protein encoded by the Saccharomyces kluyveri FAD3 gene (Sk-FAD3) consists of 419 amino acids, and shows 30–60 % identity with Δ12 fatty acid desaturases of several eukaryotic organisms and 29–31 % identity with ω3 fatty acid desaturases of animals and plants. During Sk-FAD3 expression in Saccharomyces cerevisiae, α-linolenic acid accumulated only when linoleic acid was added to the culture medium. The disruption of Sk-FAD3 led to the disappearance of α-linolenic acid in S. kluyveri. These findings suggest that Sk-FAD3 is the only ω3 fatty acid desaturase gene in this yeast. Furthermore, transcriptional expression of Sk-FAD3 appears to be regulated by low-temperature stress in a manner different from the other fatty acid desaturase genes in S. kluyveri.


2006 ◽  
Vol 72 (4) ◽  
pp. 2982-2987 ◽  
Author(s):  
Hong Luo ◽  
Xuan Li ◽  
Guohong Li ◽  
Yanbo Pan ◽  
Keqin Zhang

ABSTRACT Efficient killing of nematodes by Stropharia rugosoannulata Farlow ex Murrill cultures was observed. This fungus showed the ability to immobilize the free-living nematode Panagrellus redivivus Goodey within minutes and to immobilize the pine wilt nematode Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle within hours on agar plates. Moreover, P. redivivus worms were completely degraded by the fungus within 24 to 48 h. The cultures of S. rugosoannulata studied shared the characteristic of abundantly producing cells with finger-like projections called acanthocytes. We showed that the nematode-attacking activity of this fungus is carried out by these spiny acanthocytes and that mechanical force is an important factor in the process. Furthermore, the growth and nematode-attacking activity of the fungus in soil were also determined, and our results suggest that acanthocytes are functional in soil.


2006 ◽  
Vol 131 (2) ◽  
pp. 284-289 ◽  
Author(s):  
Mauricio A. Cañoles ◽  
Randolph M. Beaudry ◽  
Chuanyou Li ◽  
Gregg Howe

Six-carbon aldehydes and alcohols formed by tomato (Lycopersicon esculentum Mill.) leaf and fruit tissue following disruption are believed to be derived from the degradation of lipids and free fatty acids. Collectively, these C-6 volatiles comprise some of the most important aroma impact compounds. If fatty acids are the primary source of tomato volatiles, then an alteration in the fatty acid composition such as that caused by a mutation in the chloroplastic omega-3-fatty acid desaturase (ω-3 FAD), referred to as LeFAD7, found in the mutant line of `Castlemart' termed Lefad7, would be reflected in the volatile profile of disrupted leaf and fruit tissue. Leaves and fruit of the Lefad7 mutant had ≈10% to 15% of the linolenic acid (18:3) levels and about 1.5- to 3-fold higher linoleic acid (18:2) levels found in the parent line. Production of unsaturated C-6 aldehydes Z-3-hexenal, Z-3-hexenol, and E-2-hexenal and the alcohol Z-3-hexenol derived from 18:3 was markedly reduced in disrupted leaf and fruit tissue of the Lefad7 mutant line. Conversely, the production of the saturated C-6 aldehyde hexanal and its alcohol, hexanol, were markedly higher in the mutant line. The shift in the volatile profile brought about by the loss of chloroplastic FAD activity in the Lefad7 line was detected by sensory panels at high significance levels (P < 0.0005) and detrimentally affected fruit sensory quality. The ratios and amounts of C-6 saturated and unsaturated aldehydes and alcohols produced by tomato were dependent on substrate levels, suggesting that practices that alter the content of linoleic and linolenic acids or change their ratios can influence tomato flavor.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 134-135
Author(s):  
Artemis P Simopoulos

Abstract Human beings evolved on a diet that was balanced in the omega-6 and omega-3 essential fatty acids to which their genes were programmed to respond. Studies on gene-nutrient interactions using methods from molecular biology and genetics have clearly shown that there are genetic differences in the population, as well as differences in the frequency of genetic variations that interact with diet and influence the growth and development of humans and animals, as well as overall health and chronic disease. Nutrigenetics refers to studies on the role of genetic variants and their response to diet. For example, persons with genetic variants in the metabolism of omega-6 and omega-3 fatty acids have different levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) based on the type of genetic variant in the Fatty Acid Desaturase 1 (FADS1) and Fatty Acid Desaturase 2 (FADS2). At the same level of linoleic acid (LA) and alpha-linolenic acid (ALA) a person with a genetic variant that increases the activity of the FADS1 will have a higher AA in the red cell membrane phospholipids and a higher risk for obesity and cardiovascular disease. Nutrigenomics refers to how nutrients (diets) influence the expression of genes. For example, diets rich in omega-3 fatty acids, EPA and DHA decrease the expression of inflammatory genes and as a result decrease the risk of obesity and cardiovascular disease. Thus, through studies on Nutrigenetics/Nutrigenomics nutritional science stands at its “golden threshold” where personalized nutrition is the future, to improve an individual’s health.


2020 ◽  
pp. 1-26
Author(s):  
Yan Wang ◽  
Yiwei Tang ◽  
Ye Ji ◽  
Wenhui Xu ◽  
Naeem Ullah ◽  
...  

Abstract In this study, we analysed the effects of single nucleotide polymorphism (SNP) rs174547 (T/C) in the fatty acid desaturase 1 (FADS1) gene on long-chain polyunsaturated fatty acid levels. Four databases were searched to retrieve related literature with keywords such as fatty acid, SNP, FADS1, and rs174547. A meta-analysis of the data was performed using Stata12.0 software, including summary statistics, test for heterogeneity, evaluation of publication bias, subgroup analysis, and sensitivity analysis. The associations between rs174547 in FADS1 and seven types of fatty acids, and delta-5 (D5D) and delta-6 fatty acid desaturase (D6D) activity were assessed based on the pooled results from 11 manuscripts. A total of 3713 individuals (1529 TT and 2184 TC+CC) were included. The results demonstrated that minor C allele carriers of rs174547 had higher linoleic acid (LA; P < 0.001) and α-linolenic acid (P = 0.020) levels, lower gamma linoleic acid (GLA; P = 0.001) and arachidonic acid (P = 0.024) levels, and lower D5D (P = 0.005) and D6D (P = 0.004) activities than the TT genotype group. Stratification analysis showed that minor C allele carriers of rs174547 had higher LA and lower GLA levels and lower D6D activities in plasma (LA, P < 0.001; GLA, P < 0.001; D6D activity, P < 0.001) samples and in Asian populations (LA, P < 0.001; GLA, P = 0.001; D6D activity, P = 0.001) than the TT genotype group. In conclusion, minor C allele carriers of the SNP rs174547 were associated with decreased activity of D5D and D6D.


Sign in / Sign up

Export Citation Format

Share Document