scholarly journals Leptin Enhances Inflammatory Mediator Production by Normal Human Lung Fibroblasts Via the Leptin Receptor, P38 MAPK and JAK2/STAT3 Signaling Pathway and May Contribute to Worsening of Asthma in Obesity

Author(s):  
K. Watanabe ◽  
M. Suzukawa ◽  
K. Kobayashi ◽  
H. Tashimo ◽  
A. Hebisawa ◽  
...  
2013 ◽  
Vol 304 (11) ◽  
pp. L774-L781 ◽  
Author(s):  
David H. McMillan ◽  
Collynn F. Woeller ◽  
Thomas H. Thatcher ◽  
Sherry L. Spinelli ◽  
Sanjay B. Maggirwar ◽  
...  

Lung inflammation can result from exposure to multiple types of inflammatory stimuli. Fibroblasts, key structural cells in the lung that are integral to inflammation and wound healing, produce inflammatory mediators after exposure to stimuli such as IL-1β. We and others have shown that the NF-κB member RelB has anti-inflammatory properties in mice. Little is known, however, about the anti-inflammatory role of RelB in human cells and how it functions. MicroRNAs (miRNAs), a novel class of small, noncoding RNAs, can mediate inflammatory signaling pathways, including NF-κB, through regulation of target gene expression. Our goal was to analyze the anti-inflammatory properties of RelB in human lung fibroblasts. We hypothesized that RelB regulates inflammatory mediator production in lung fibroblasts in part through a mechanism involving miRNAs. To accomplish this, we transfected human lung fibroblasts with a plasmid encoding RelB and small interfering (si)RNA targeting RelB mRNA to overexpress and downregulate RelB, respectively. IL-1β, a powerful proinflammatory stimulus, was used to induce NF-κB-driven inflammatory responses. RelB overexpression reduced IL-1β-induced cyclooxygenase (Cox)-2, PGE2, and cytokine production, and RelB downregulation increased Cox-2 expression and PGE2 production. Furthermore, RelB overexpression increased IL-1β-induced expression of miRNA-146a, an NF-κB-dependent miRNA with anti-inflammatory properties, whereas RelB downregulation reduced miRNA-146a. miR-146a overexpression ablated the effects of RelB downregulation on IL-1β-induced Cox-2, PGE2, and IL-6 production, suggesting that RelB mediates IL-1β-induced inflammatory mediator production in lung fibroblasts through miRNA-146a. RelB and miRNA-146a may therefore be new therapeutic targets in the treatment of lung inflammation caused by various agents and conditions.


PPAR Research ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Christopher M. Hogan ◽  
Thomas H. Thatcher ◽  
Ramil E. Sapinoro ◽  
Michael N. Gurell ◽  
Heather E. Ferguson ◽  
...  

2002 ◽  
Vol 16 (3) ◽  
pp. 267-273 ◽  
Author(s):  
F. Leira ◽  
M.C. Louzao ◽  
J.M. Vieites ◽  
L.M. Botana ◽  
M.R. Vieytes

2016 ◽  
Vol 12 (2) ◽  
pp. 1380-1386 ◽  
Author(s):  
Shulong Jiang ◽  
Yebo Gao ◽  
Wei Hou ◽  
Rui Liu ◽  
Xin Qi ◽  
...  

IUBMB Life ◽  
1996 ◽  
Vol 39 (5) ◽  
pp. 895-904 ◽  
Author(s):  
Byung-Heon Lee ◽  
Rang-Woon Park ◽  
Je-Yong Choi ◽  
Hyun-Mo Ryoo ◽  
Kun-Young Sohn ◽  
...  

2021 ◽  
Author(s):  
Hui Chen ◽  
Jinfeng Cui ◽  
Juan Wang ◽  
Yuan Wang ◽  
Fei Tong ◽  
...  

Abstract Pulmonary fibrosis is one of the most common complications of paraquat (PQ) poisoning, which becomes the focus of treatment. More and more studies have found that 5-Aminosalicylic acid (5-ASA) may be a prospective therapy against fibrotic diseases. In the present study, we observed whether 5-ASA could attenuate the pulmonary fibrosis in PQ-treated rats and human lung fibroblasts (WI38VA13) cells, and subsequently explored the possible underlying mechanisms. Wistar rats were divided into control group, 5-ASA group, PQ group and PQ + 5-ASA group. Rats were sacrificed on 3, 7, 14, and 28 days after PQ treatment. We observed pulmonary histopathological changes and fibrosis formation among different groups through hematoxylin and eosin (H&E) and Masson staining and TGF-β1, p-Smad3 and the peroxisome proliferator activated receptor γ (PPARγ) pulmonary content via immunohistochemical staining and Western blot. In addition, human lung fibroblasts WI38VA13 were also divided into control group, PQ group, 5-ASA group and PQ + 5-ASA group. And the role of TGF-β1 signaling pathway regulated factors (TGF-β1, p-Smad3 and PPARγ) were explored. Treatment with 5-ASA significantly inhibited the PQ-induced activation of TGF-β1 signaling pathway in human lung fibroblasts WI38VA13 cells. In conclusion, the results of this study suggested that 5-ASA has potential value in the treatment of PQ-induced pulmonary fibrosis via suppressing the activation of TGF-β1 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document