Abundance changes in orb-weaver spider communities at the edge of the Argiope bruennichi expansion range

Zootaxa ◽  
2020 ◽  
Vol 4899 (1) ◽  
pp. 363-373
Author(s):  
WIOLETTA WAWER ◽  
JOLANTA WYTWER

Expanding range is an inherent feature of any species and may be caused by climate change, destruction or other change of habitat, or lack of natural enemies. In a new habitat the species may be neutral, or as predator it can displace related species through competition. A strong expansion to northern Europe was observed in the thermophilous spider species Argiope bruennichi. The species doubled its range in Poland during the 1990s and its impact on native species was not investigated so far. In this article, the results of studies about A. bruennichi number (density) and its contribution in orb-weaver spider communities are analysed. We also try to determine the impact of newly occurring species on the local araneofauna. 

2012 ◽  
Vol 12 (2) ◽  
pp. 4901-4939 ◽  
Author(s):  
J. Langner ◽  
M. Engardt ◽  
A. Baklanov ◽  
J. H. Christensen ◽  
M. Gauss ◽  
...  

Abstract. The impact of climate change on surface ozone over Europe was studied using four offline regional chemistry transport models (CTMs) and one online regional integrated climate-chemistry model (CCM) driven by the same global projection of future climate under the SRES A1B scenario. Anthropogenic emissions of ozone precursors from RCP4.5 for year 2000 were used for simulations of both present and future periods in order to isolate the impact of climate change and to assess the robustness of the result across the different models. The sensitivity of the simulated surface ozone to changes in climate between the periods 2000–2009 and 2040–2049 differs among the models, but the general pattern of change with an increase in southern Europe and decrease in northern Europe is similar across different models. Emissions of isoprene differ substantially between different CTMs ranging from 1.6 to 8.0 Tg yr−1 for the current climate, partly due to differences in horizontal resolution of meteorological input data. Also the simulated change in isoprene emissions varies substantially across models explaining part of the different response. Average model changes in summer mean ozone and mean of daily maximum ozone exceed 1 ppb(v) in parts of the land area in southern Europe. Corresponding changes of 95-percentiles of hourly ozone exceed 2 ppb(v) in the same region. Over land areas in northern Europe ensemble mean changes in all these measures are mostly negative.


2021 ◽  
Author(s):  
Francesco Faccini ◽  
Andrea Benedettini ◽  
Valentina Brodasca ◽  
Umberto Bruschini ◽  
Riccardo Giammarini ◽  
...  

<p>The Horizon 2020 RECONECT - Regenerating ECOsystems with Nature-Based Solutions for hydro-meteorological risk rEduCTion - Project aims to contribute to a European reference framework on NBS by demonstrating, upscaling and spreading large-scale NBSs in natural areas.</p><p>The Italian RECONECT demonstrator is set in the Portofino Park, which represents a unique natural and cultural landscape but is severely endangered by geo-hydrological hazards.</p><p>The most frequent processes are shallow landslides and flash floods, sea-storm surges, rockfalls and mud-debris flows. Often, several different processes can occur simultaneously during an intense meteorological event, causing a location specific multi-hazard effect.</p><p>This research introduces the NBSs interventions designed within the RECONECT Italian case study in two pilot catchments (San Fruttuoso and Paraggi basins), accessed by thousands of tourists throughout the year.</p><p>Amongst all possible interventions that can be implemented in the protected area, NBSs are considered to be most suitable due to their minimal impact and the possibilities for integration within the natural environment. The Portofino Park has already been promoting interventions aimed at reducing the impact of geo-hazards within the protected area in response to climate change. As part of the RECONECT project, and in order to achieve sound engineering and technological solutions which can also preserve unique landscapes of natural and cultural heritage, the Park authority is realizing a set of NBSs in San Fruttuoso and Paraggi catchments. The purpose of the design is to demonstrate how NBSs can be integrated into such areas and how to reduce geo-hydrological risk for given climate change scenarios within the framework of an ecosystem based holistic approach for risk reduction.</p><p>The main scope of NBSs in San Fruttuoso is to address following basic challenges: stabilizing of rock masses; reduction of geo-hydrologic risks in order to intercept and reduce suspended and solid transport along the streams as well as reducing erosion; forest management focused to improve biodiversity, to remove non-native species and dangerous old specimen (Pine trees), not suitable in a Mediterranean climate, in order to select the climax species (i.e. Quercus ilex); restoration of dry-stone walls with the aim to valorize the terraced landscape as well as stabilizing the slopes.</p><p>The reconstruction of terraces and the regeneration of natural and man-made ecosystems will also be implemented within the Paraggi basin. In addition, hydraulic-forestry arrangements on water courses will be undertaken to improve the outflow and decrease solid transport and floating debris. Furthermore, other measures such as riverbed and tributary implementations, maintenance along hiking paths, slope stabilization, and cleaning and removing dead vegetation and dirt will also be undertaken.</p><p>The project also includes hydro-meteorological monitoring activities in the selected basins and the periodic checking of NBSs performance indicators. Lastly, remote sensing surveys are used to quantitatively assess the ongoing gemorphogical processes.</p><p>In relation to future projections of natural and socio-economic impacts of climate change, NBS represent a relevant mitigation and adaptation strategy for the Portofino case study, which may be upscaled to national and international level.</p>


2021 ◽  
Author(s):  
Léonard Schneider ◽  
Valentin Comte ◽  
Baptiste Sneiders ◽  
Martine Rebetez

<p>Global warming increases the need for local climatic studies in wine-producing areas. Winegrowers have to develop strategies to adapt their activities to new climatic conditions and to their various effects on vine culture. Among them, distribution and population dynamics of pest species are likely to change. New species could reach the temperate regions, and some native species could create more damages than previously in the vineyards. In Western Europe, the distribution of the American grapevine leafhopper Scaphoideus titanus has been observed to shift northwards during the last decades (Boudon and Maixner 2007). Plurivoltin species such as the European grapevine moth Lobesia botrana could produce more generations per year (Gutierrez et al. 2018), creating potentially more damages on grapes. To help winegrowers, it is crucial to lead research at local scale, taking into account microclimatic specificities of the vineyards (Mozell and Thach 2014).</p><p> </p><p>In this study, we examine temperature trends during the growing season in the region of Neuchatel and their potential impacts on major vine pest species. We focus on the American grapevine leafhopper and on the European grapevine moth. The American grapevine leafhopper is already established in the Lake Geneva area and could soon reach the Neuchatel area, while the European grapevine moth is already present in the Neuchatel vineyard. We use temperature data over the last 40 years (1980-2019) and two climatic scenarios to assess present suitability for pest development and the perspectives for the next decades.</p><p> </p><p> </p><p>REFERENCES</p><p>Boudon, E. & M. Maixner. 2007. Potential effects of climate change on distribution and activity of insect vectors of grapevine pathogens. In International and multi-disciplinary" Global warming, which potential impacts on the vineyards?".</p><p>Gutierrez, A. P., L. Ponti, G. Gilioli & J. Baumgärtner (2018) Climate warming effects on grape and grapevine moth (Lobesia botrana) in the Palearctic region. Agricultural and Forest Entomology, 20<strong>,</strong> 255-271.</p><p>Mozell, M. R. & L. Thach (2014) The impact of climate change on the global wine industry: Challenges & solutions. Wine Economics and Policy, 3<strong>,</strong> 81-89.</p><p> </p>


Author(s):  
Thorsten Blenckner ◽  
Rita Adrian ◽  
Lauri Arvola ◽  
Marko Järvinen ◽  
Peeter Nõges ◽  
...  

Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Sign in / Sign up

Export Citation Format

Share Document