Fuzzy Decentralized Controller Design with Internet of Things for Urban Trains

2020 ◽  
Vol 12 (3) ◽  
pp. 422-433 ◽  
Author(s):  
Seyyed Mohammad Hosseini Rostami ◽  
Vahid Alimohammadi

Due to the dynamic structure and physical constraints that exist in controlling the urban train system, the physical parameters of the urban train model are constantly changing, and therefore a static controller cannot fully control all of the control objectives to be defined. In this paper, a new method of using a PID controller based on fuzzy control with considering the uncertainty of the weight of the dynamic model of the system is presented for managing the dynamical model of the urban train. The primary objective of this research work is to provide a structure that simultaneously, in addition to guaranteeing the stability of the Kharitonov polynomials, the dynamic model of the sample system also automatically adjusts and controls the proposed controller control parameters. In order to introduce model uncertainties into the controller design calculations, Kharitonov polynomials related to the open loop conversion function are first extracted. Then the feedback loop is constructed with a parallel PID controller, and by rewriting the closed-loop conversion function equations, we obtain the set of all closed-loop system transformation functions, in which the model's indices are also considered. Subsequently, by examining the stability ranges of all closed-loop functions, the values obtained for the proportional, integral, and derivative parameters of the PID controller are obtained for its robust performance. Finally, a fuzzy-based structure is proposed for intelligent operation and online adjustment of proposed PID controller coefficients. Further, this research work outlines twolevel Internet of Things (IoT) sensor network that compliments the proposed mathematical model by providing real-time model parameters using the sensory information.

2012 ◽  
Vol 151 ◽  
pp. 626-631
Author(s):  
Qiang Ma ◽  
Jian Gang Lu ◽  
Qin Min Yang ◽  
Jin Shui Chen ◽  
You Xian Sun

This work proposes a generalized predictive control (GPC) based controller for the temperature of HVAC chilled water supply. In this paper, several models of evaporator are firstly introduced, wherein an identified black-box model is selected for the purpose of controller design. Based on this model, a GPC based controller is employed to obtain a satisfactory performance even with the presence of disturbance. The theoretical results show the stability of the closed-loop system and the performance of this scheme is compared with that of traditional PID controller under simulation environment.


2013 ◽  
Vol 303-306 ◽  
pp. 1167-1170
Author(s):  
Zhi Yi Xu ◽  
Xiang Jun Zhang ◽  
Zhen Liu

The paper proposes a new method based on the Viere theorem to decide the range containing the optimal parameters. The method can accelerate the parameters search speed on the computer and avoid some unnecessary job for PID controller design. It can be acted as a criterion to judge the stability of the closed loop system.


2015 ◽  
Vol 2015 ◽  
pp. 1-22 ◽  
Author(s):  
Mashitah Che Razali ◽  
Norhaliza Abdul Wahab ◽  
P. Balaguer ◽  
M. F. Rahmat ◽  
Sharatul Izah Samsudin

Proportional integral derivative (PID) controllers are commonly used in process industries due to their simple structure and high reliability. Efficient tuning is one of the relevant issues of PID controller type. The tuning process always becomes a challenging matter especially for multivariable system and to obtain the best control tuning for different time scales system. This motivates the use of singularly perturbation method into the multivariable PID (MPID) controller designs. In this work, wastewater treatment plant and Newell and Lee evaporator were considered as system case studies. Four MPID control strategies, Davison, Penttinen-Koivo, Maciejowski, and Combined methods, were applied into the systems. The singularly perturbation method based on Naidu and Jian Niu algorithms was applied into MPID control design. It was found that the singularly perturbed system obtained by Naidu method was able to maintain the system characteristic and hence was applied into the design of MPID controllers. The closed loop performance and process interactions were analyzed. It is observed that less computation time is required for singularly perturbed MPID controller compared to the conventional MPID controller. The closed loop performance shows good transient responses, low steady state error, and less process interaction when using singularly perturbed MPID controller.


Author(s):  
Asma Karoui ◽  
Rihem Farkh ◽  
Moufida Ksouri

This paper presents an approach of stabilization and control of time invariant linear system of an arbitrary order that include several time delays. In this work, the stability is ensured by PI, PD and PID controller. The method is analytical and needs the knowledge of transfer function parameters of the plant. It permits to find stability region by the determination of p K , i K and d K gains.


The reason for this work is to plan a robust yield feedback control way to deal with dispense with torque stick-slip vibrations in boring frameworks. Current industry controllers generally neglect to dispose of stick-slip vibrations, particularly when different torque flex modes assume a job in maniacal assault. In terms of build controller production, a real trainingstring system performs a multi-level model work such as torque mechanics. The proposed controller design is artfully distorted at optimizing the stability with respect to the uncertainty of the nonlinear bit-rock interaction. Based on heroes and intentions. Besides, a closed loop strength examination of the nonlinear preparing string model is displayed. This controller structure system offers a few points of interest contrasted with existing controllers. To begin with, just surface estimations are utilized, barring the requirement for entire estimations underneath it. Second, multi-level training-string dynamics are effectively handled in ways to access state-training controllers. Third, stability is explicitly provided with respect to bit-rock contact uncertainty and closed-loop performance specifications include controller design. The results of the study report confirm that stick-slip vibrations are actually eliminated in realistic drilling scenarios using a controller designed to achieve this state-ofcontrol control.


Author(s):  
Mohd Hafiz Jali ◽  
Ahmad Firdaus Azhar ◽  
Rozaimi Ghazali ◽  
Chong Chee Soon

Nowadays, versatilities of controllers have been developed to control the Coupled Tank System (CTS) such as proportional, integral, derivative (PID), fuzzy, fuzzy PID and neuro network. This paper focused on the control of the pump flow rate, in and out of the tank against the cross-sectional area of the CTS’s tank. The main objective of this paper is to design a CTS by using MATLAB since the Fuzzy Logic Controller (FLC) is widely utilized in the control of engineering applications in the industrial. Therefore, the FLC will be utilized to control and improve the performance of the CTS. The conventional PID controller will be applied, which reacts as a benchmark in the performance of the FLC. Parameters such as steady state error, settling time, and maximum overshoot will be part of the simulation results. As a result of the dynamic response executed in the closed-loop environment, it can be concluded that the FLC is capable of performing better than the conventional PID controller.


Author(s):  
Zhizheng Wu ◽  
Azhar Iqbal ◽  
Foued Ben Amara

In this paper, a decentralized robust PID controller design method is proposed for multi-input multi-output systems. The system model is first decoupled in the low frequency range, and only the diagonal entries in the DC-decoupled plant model are retained. To deal with the resulting unmodeled high frequency dynamics, a decentralized robust PID controller design method is proposed, where the robust stability and transient response performance of the resulting closed loop system are formulated as a multi-objective H∞/H2 static output feedback problem. The desired parameters of the PID controller are determined by solving a static output feedback problem using linear matrix inequalities (LMIs). Finally, the performance of the proposed control algorithm is experimentally evaluated on the adaptive optics system involving a prototype magnetic fluid deformable mirror (MFDM). The experimental results illustrate the effectiveness of the proposed control algorithm for the MFDM surface shape tracking in the closed loop adaptive optics system.


2013 ◽  
Vol 483 ◽  
pp. 361-367 ◽  
Author(s):  
Ansu Man Singh ◽  
Deok Jin Lee ◽  
Dong Pyo Hong ◽  
Kil To Chong

In this paper, a new systematic approach for designing a self-tuning controller for an autonomous quadrotor robot is introduced.In order to design the self-tuning controller, first, a linearized dynamic model of a quadrotor about hovering positions is derived, and thenthe successive loop closure approach is applied to design the self-tuning PID controller of the attitude, altitude and velocity for the autonomous flying capability of the flying robot. In addition, nonlinearities of the design model are also imposed in the control loop by takinginto account the saturation of actuators. For the verification of the effectiveness of the proposed controller, various simulation studiesare carried out in terms of the accuracy and robustness.


2011 ◽  
Vol 219-220 ◽  
pp. 1367-1370 ◽  
Author(s):  
Ying Chen

Along with the development of power electronic technology, various inverters are widely used in all sectors. the advanced modern control theory and methods have been applied in the inverter, which made the stability and reliability for the inverter have improved greatly. In this paper analyses the working principle for SPWM inverter that used voltage and current cut-loop PID control strategy, in the voltage loop and current loop make use of its transfer function to both no-load and full load conditions for digital simulation, and get different Bode diagrams, meanwhile also analyses the different simulation results for system that without add PID controller and join PID controller, with the analyze results can determine the open-loop frequency characteristics of various parameters for the closed- loop system, and to ensure the output inverter to achieve the intended targets.


2016 ◽  
Vol 39 (12) ◽  
pp. 1785-1797 ◽  
Author(s):  
Feng Pan ◽  
Lu Liu ◽  
Dingyu Xue

In this paper, we used a Qball-X4 quad-rotor unmanned aerial vehicle (UAV) which was developed by the Quanser Company as the experimental platform. First, a fundamental mathematical model of the Qball-X4 quad-rotor UAV was built and a simulation model was set up based on the proposed mathematical model; then, a double closed-loop optimal proportional–integral–derivative (PID) controller based on integral of time multiplied by absolute error (ITAE) indices was designed according to the model structure. In consideration of the possible system error and data delay, we designed a corresponding Kalman filter, which can estimate the target trajectory and be put before the proposed PID controller to ensure their validity. Finally, simulation results of the system with presented PID controller and Kalman filter were shown to verify their effectiveness.


Sign in / Sign up

Export Citation Format

Share Document