Live In-Vivo Neuroimaging Reveals the Transport of Lipophilic Cargo Through the Blood-Retina Barrier with Modified Amphiphilic Poly-N-Vinylpyrrolidone Nanoparticles

2021 ◽  
Vol 17 (5) ◽  
pp. 846-858
Author(s):  
Mohamed Tawfik ◽  
Steffen Hadlak ◽  
Christian Götze ◽  
Maxim Sokolov ◽  
Pavel Kulikov ◽  
...  

The blood-retina barrier (BRB), analogous to the blood-brain barrier, is a major hurdle for the passage of drugs from the blood to the central nervous system. Here, we designed polymeric nanoparticles from amphiphilic poly-/V-vinylpyrrolidone (Amph-PVP NPs) as a new carrier-system and investigated their ability to pass the BRB using a live In-Vivo neuroimaging system for the retina in rats and ex-vivo wholemounted retinae preparation. Amph-PVP NPs were loaded with hydrophobic fluorescent markers as a surrogate for hydrophobic drugs. Linking these NPs with the hydrophobic fluorescence marker Carboxyfluorescein-succinimidyl-ester (CFSE) to the surface, induced the passage of the cargo into the retina tissue. In particular, we observed a substantial internalization of the CFSE-linked NPs into blood cells. We propose surface- modified Amph-PVP NPs as a potential new nano-carrier platform to target posterior eye and potentially brain diseases while camouflaged by blood cells.

Author(s):  
Claudia Matteucci ◽  
Antonella Minutolo ◽  
Emanuela Balestrieri ◽  
Vita Petrone ◽  
Marialaura Fanelli ◽  
...  

Abstract COVID-19 is characterized by immune-mediated lung injury and complex alterations of the immune system, such as lymphopenia and cytokine storm, that have been associated with adverse outcomes underlining a fundamental role of host response in SARS-CoV-2 infection and the pathogenesis of the disease. Thymosin alpha 1 (Tα1) is one of the molecules used in the management of COVID-19, since it is known to restore the homeostasis of the immune system during infections and cancer. Here we captured the interconnected biological processes regulated by Tα1 in CD8+ T cells under inflammatory conditions. Genes associated with cytokine signaling and production were found up-regulated in blood cells from COVID-19 patients and the ex-vivo treatment with Tα1 mitigated cytokines expression and inhibited lymphocytes activation in CD8+ T cell subset specifically, suggesting the potential role of Tα1 in modulating the immune response homeostasis and the cytokine storm in vivo.


2017 ◽  
Vol 6 (2) ◽  
pp. 184-191 ◽  
Author(s):  
Mohammed Elmowafy ◽  
Ahmed Samy ◽  
Abdelaziz E. Abdelaziz ◽  
Khaled Shalaby ◽  
Ayman Salama ◽  
...  

2002 ◽  
Vol 20 (5) ◽  
pp. 467-472 ◽  
Author(s):  
Thi My Anh Neildez-Nguyen ◽  
Henri Wajcman ◽  
Michael C. Marden ◽  
Morad Bensidhoum ◽  
Vincent Moncollin ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 675 ◽  
Author(s):  
Mariana Amaral ◽  
Ana Sofia Martins ◽  
José Catarino ◽  
Pedro Faísca ◽  
Pradeep Kumar ◽  
...  

Currently, insulin can only be administered through the subcutaneous route. Due to the flaws associated with this route, it is of interest to orally deliver this drug. However, insulin delivered orally has several barriers to overcome as it is degraded by the stomach’s low pH, enzymatic content, and poor absorption in the gastrointestinal tract. Polymers with marine source like chitosan are commonly used in nanotechnology and drug delivery due to their biocompatibility and special features. This work focuses on the preparation and characterization of mucoadhesive insulin-loaded polymeric nanoparticles. Results showed a suitable mean size for oral administration (<600 nm by dynamic laser scattering), spherical shape, encapsulation efficiency (59.8%), and high recovery yield (80.6%). Circular dichroism spectroscopy demonstrated that protein retained its secondary structure after encapsulation. Moreover, the mucoadhesive potential of the nanoparticles was assessed in silico and the results, corroborated with ex-vivo experiments, showed that using chitosan strongly increases mucoadhesion. Besides, in vitro and in vivo safety assessment of the final formulation were performed, showing no toxicity. Lastly, the insulin-loaded nanoparticles were effective in reducing diabetic rats’ glycemia. Overall, the coating of insulin-loaded nanoparticles with chitosan represents a potentially safe and promising approach to protect insulin and enhance peroral delivery.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1230-1230
Author(s):  
Bindumadhav M Marathe ◽  
Amanda Prislovsky ◽  
Amira Hosni ◽  
Ted S Strom

Abstract The Wiskott-Aldrich Syndrome is a congenital X-linked immunodeficiency caused by mutations in the WASP gene. The most common clinical presentation is recurrent infection, eczema, and thrombocytopenia. Autoimmune disease occurs in as much as 70% of WAS patients. WASP functions to transmit and integrate signals that originate at the cell membrane and result in actin polymerization. The latter in turn augments signal transduction downstream of cell surface ligands such as the T-cell receptor and macrophage integrins. Dysfunction of these signal transduction pathways is thought to result in the immunodeficiency. The mechanism by which WASP deficiency results in thrombocytopenia, however, is not well understood. Although WASP(−) platelets are smaller than normal, no cytoskeletal defect has been consistently observed in them. While platelet aggregation abnormalities have been reported, it is not known whether they contribute significantly to the hemorrhagic complications seen in severely thrombocytopenic WAS patients. WASP(−) platelets are consumed more rapidly in vivo than are normal platelets, both in normal volunteers and in WAS patients. Platelet production rate may be reduced as well. Splenectomy improves platelet counts in WAS patients, but the subsequent incidence of ITP is high (23% in one study). WAS patients with low but detectable levels of WASP can show a fluctuating thrombocytopenia similar to the course of ITP. These findings suggest that autoimmunity could contribute to the thrombocytopenia of WAS. A murine model of WAS shows a milder thrombocytopenia (approximately 50% of normal) and normal platelet size. We have shown that WASP(−) murine platelets are consumed more rapidly than WT platelets in either WT or WASP(−) recipients. Their in vivo consumption rate is more affected by antibody opsonization than is that of WT platelets, a finding we have corroborated with ex vivo phagocytosis studies. A subset of WASP(−) mice show a more severe thrombocytopenia with an increased fraction of reticulated platelets (RP), suggesting the presence of antiplatelet antibodies. To test this, we have optimized a flow cytometric assay for serum antiplatelet antibodies by using target platelets that are briefly formalin fixed, and using target platelets from muMT(−/−) mice, which lack background levels of surface antibodies. Using this assay, we have detected serum anti-platelet antibodies in a subset of WASP(−) and WASP(−)CD47(−/−) mice. We have not detected antibodies in WT(B6) mice or in CD47(−/−) mice. We are unable to detect these antibodies with non-fixed target platelets. Use of fixed WT target platelets significantly reduces the sensitivity of the assay. The antibodies are predominantly of the IgG class. Their in vivo significance is supported by the finding that they are more frequent in WASP(−) mice with increased RP (4 of 5 tested) than in those with normal RP (1 of 7 tested). Also, antibody expressing (Ab+) mice show more rapid consumption of CMFDA-labeled WASP(−) platelets than do Ab-mice. To determine whether these antibodies have the differential effect on in vivo WASP(−) platelet consumption that we previously observed after ex vivo opsonization, we simultaneously quantified the consumption rate of WT and WASP(−) platelets in antibodyexpressing (Ab+) and antibody-negative (Ab−) WASP(−) mice. We did this by labeling the two platelet preparations with different fluorescent markers (CMFDA and BMQC). We verified that the fluorescent markers had no differential effect on platelet consumption in vivo. We then found more rapid consumption of both WT and WASP(−) platelets in Ab(+) mice. In some of the latter, WASP(−) platelet consumption is enhanced relative to that of WT platelets. These results suggest that WASP deficient mice, and WAS patients, may be both more prone to develop antiplatelet antibodies and, in some cases, more susceptible to their effects on platelet consumption.


2021 ◽  
Author(s):  
Bourama KEITA ◽  
Seidina Diakité ◽  
Agnes Guindo ◽  
Drissa Konaté ◽  
Karim Traoré ◽  
...  

Abstract Malaria pathophysiology is not still fully understood. The main mechanisms of malaria involve the synergistic interactions between host and parasite. Although, the role of the spleen has been mentioned in various clinical forms of malaria, a supportive clinical evidence is still needed. We conducted a pilot study to determine the impact of the spleen functional state in different clinical forms of malaria. Ex vivo microsphiltration was used to assess the splenic function in patients received during routine consultation with mild malaria at the Kéniéroba health center, a ​​high malaria endemic area in Mali. A total of 25 patients were enrolled for ex vivo microsphiltration. Spleen was non-palpable (Hackett stage 0) in two patients, palpable with deep inspiration (Hackett stage 1) in 22 patients and without deep inspiration (Hackett stage 2) in one patient, parasitaemia ranged from 5360 trophozoites/µl to 342720 trophozoites/µl with a mean parasitemia of 50774 trophozoites/µl ± 65540 trophozoites/µl. The mean hemoglobin level was 11.2g/dl ± 1.2 [8.7-13.4]. The retention rate of the infected red blood cell ranged from 11.11% to 94.44% with 65.4% ± 23.7% on average. A higher ex vivo retention rate of infected red blood cells was observed in patients with Hackett stage other than 0 (p= 0.03). This pilot study proved that it was feasible to use the ex vivo microsphiltration to explore the spleen filtering function in malaria patients.


2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Woutje M. Berdowski ◽  
Leslie E. Sanderson ◽  
Tjakko J. van Ham

ABSTRACT Microglia are highly dynamic cells crucial for developing and maintaining lifelong brain function and health through their many interactions with essentially all cellular components of the central nervous system. The frequent connection of microglia to leukodystrophies, genetic disorders of the white matter, has highlighted their involvement in the maintenance of white matter integrity. However, the mechanisms that underlie their putative roles in these processes remain largely uncharacterized. Microglia have also been gaining attention as possible therapeutic targets for many neurological conditions, increasing the demand to understand their broad spectrum of functions and the impact of their dysregulation. In this Review, we compare the pathological features of two groups of genetic leukodystrophies: those in which microglial dysfunction holds a central role, termed ‘microgliopathies’, and those in which lysosomal or peroxisomal defects are considered to be the primary driver. The latter are suspected to have notable microglia involvement, as some affected individuals benefit from microglia-replenishing therapy. Based on overlapping pathology, we discuss multiple ways through which aberrant microglia could lead to white matter defects and brain dysfunction. We propose that the study of leukodystrophies, and their extensively multicellular pathology, will benefit from complementing analyses of human patient material with the examination of cellular dynamics in vivo using animal models, such as zebrafish. Together, this will yield important insight into the cell biological mechanisms of microglial impact in the central nervous system, particularly in the development and maintenance of myelin, that will facilitate the development of new, and refinement of existing, therapeutic options for a range of brain diseases.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3210
Author(s):  
Talib Hussain ◽  
Sathishbabu Paranthaman ◽  
Syed Mohd Danish Rizvi ◽  
Afrasim Moin ◽  
Devegowda Vishakante Gowda ◽  
...  

Gliomas are one of the prominent cancers of the central nervous system with limited therapeutic modalities. The present investigation evaluated the synergistic effect of paclitaxel (PAX) and resveratrol (RESV)-loaded Soluplus polymeric nanoparticles (PNPs) against glioma cell lines along with in vivo pharmacokinetics and brain distribution study. PAX-RESV-loaded PNPs were prepared by the thin film hydration technique and optimized for different dependent and independent variables by using DoE (Design-Expert) software. The in vitro physiochemical characterization of prepared PAX-RESV-loaded PNPs exhibited appropriate particle size, PDI and % encapsulation efficiency. Cytotoxicity assay revealed that PTX-RESV loaded PNPs had a synergistic antitumor efficacy against C6 glioma cells compared with single and combined pure drugs. Finally, the pharmacokinetic and brain distribution studies in mice demonstrated that the PNPs significantly enhanced the bioavailability of PTX-RESV PNPs than pure PAX and RESV. Thus, the study concluded that PAX-RESV PNPs combination could significantly enhance anti-glioma activity, and this could be developed into a potential glioma treatment strategy.


Blood ◽  
1983 ◽  
Vol 61 (6) ◽  
pp. 1068-1071 ◽  
Author(s):  
AW Bracey ◽  
HG Klein ◽  
S Chambers ◽  
L Corash

Abstract Transfusion-induced hemochromatosis is a major complication in the therapy of severe chronic anemia. Improvement of transfused cell survival with a reduction in transfusion frequency is one possible approach to this problem. Using continuous-flow centrifugation (CFC), young red blood cells (YRBC) with enhanced in vivo survival have been isolated, but the expense and donor time required with this technique prohibit its widespread use for patient support. We studied the use of the IBM 2991 cell washer (CW) to isolate YRBC ex vivo from previously collected donor blood. Age-dependent red cell separation could be achieved using this instrumentation. Autologous mean red cell half-life (RBC-T50) (n = 9) for the younger cell fractions was 43.9 +/- 7.8 days compared to 34.7 +/- 5.8 days for the older cell fractions (n = 6, p less than 0.05). Paired measurement of RBC-T50 for young and old fractions in three donors showed an average survival increase of 41% for the YRBC. Adequate quantities of YRBC with enhanced survival can be obtained with less cost and less donor stress using the CW system compared to CFC. This approach could improve the management of patients with chronic transfusion requirements and merits further examination.


2020 ◽  
Vol 217 (6) ◽  
Author(s):  
Beatrice Wasser ◽  
Dirk Luchtman ◽  
Julian Löffel ◽  
Kerstin Robohm ◽  
Katharina Birkner ◽  
...  

To study the role of myeloid cells in the central nervous system (CNS) in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), we used intravital microscopy, assessing local cellular interactions in vivo in EAE animals and ex vivo in organotypic hippocampal slice cultures. We discovered that myeloid cells actively engulf invading living Th17 lymphocytes, a process mediated by expression of activation-dependent lectin and its T cell–binding partner, N-acetyl-D-glucosamine (GlcNAc). Stable engulfment resulted in the death of the engulfed cells, and, remarkably, enhancement of GlcNAc exposure on T cells in the CNS ameliorated clinical EAE symptoms. These findings demonstrate the ability of myeloid cells to directly react to pathogenic T cell infiltration by engulfing living T cells. Amelioration of EAE via GlcNAc treatment suggests a novel first-defense pathway of myeloid cells as an initial response to CNS invasion and demonstrates that T cell engulfment by myeloid cells can be therapeutically exploited in vivo.


Sign in / Sign up

Export Citation Format

Share Document