Deep Learning for Detecting Sleep Apnea from ECG Signals

2020 ◽  
Vol 10 (6) ◽  
pp. 1265-1273
Author(s):  
Lili Chen ◽  
Huoyao Xu

Sleep apnea (SA) is a common sleep disorders affecting the sleep quality. Therefore the automatic SA detection has far-reaching implications for patients and physicians. In this paper, a novel approach is developed based on deep neural network (DNN) for automatic diagnosis SA. To this end, five features are extracted from electrocardiogram (ECG) signals through wavelet decomposition and sample entropy. The deep neural network is constructed by two-layer stacked sparse autoencoder (SSAE) network and one softmax layer. The softmax layer is added at the top of the SSAE network for diagnosing SA. Afterwards, the SSAE network can get more effective high-level features from raw features. The experimental results reveal that the performance of deep neural network can accomplish an accuracy of 96.66%, a sensitivity of 96.25%, and a specificity of 97%. In addition, the performance of deep neural network outperforms the comparison models including support vector machine (SVM), random forest (RF), and extreme learning machine (ELM). Finally, the experimental results reveal that the proposed method can be valid applied to automatic SA event detection.

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Huafeng Chen ◽  
Maosheng Zhang ◽  
Zhengming Gao ◽  
Yunhong Zhao

Current methods of chaos-based action recognition in videos are limited to the artificial feature causing the low recognition accuracy. In this paper, we improve ChaosNet to the deep neural network and apply it to action recognition. First, we extend ChaosNet to deep ChaosNet for extracting action features. Then, we send the features to the low-level LSTM encoder and high-level LSTM encoder for obtaining low-level coding output and high-level coding results, respectively. The agent is a behavior recognizer for producing recognition results. The manager is a hidden layer, responsible for giving behavioral segmentation targets at the high level. Our experiments are executed on two standard action datasets: UCF101 and HMDB51. The experimental results show that the proposed algorithm outperforms the state of the art.


2018 ◽  
Vol 7 (3.27) ◽  
pp. 10 ◽  
Author(s):  
Stalin Subbiah ◽  
Suresh Subramanian

In present day, several types of developments are carried toward the medical application.  There has been increased improvement in the processing of ECG signals. The accurate detection of ECG signals with the help of detection of P, Q, R and S waveform. However these waveforms are suffered from some disturbances like noise.  Initially denoising the ECG signal using filters and detect the PQRS waveforms. Four filters are carried out to remove the ECG noises that are Median, Gaussian, FIR and Butterworth filter. ECG signal is analyzed or classify using Extreme Learning Machine (ELM) and it compared with Support Vector Machine (SVM) and Back Propagation Neural Network (BPNN). The paper classifies the ECG signal into two classes, Normal and Abnormal. ECG waveform is detected and analyzed using the 48 records of the MIT-BIH arrhythmia database. Denoising results are evaluated using MSE, RMSE, PSNR, NAE and NCC. The classifier performance is measured in terms of Sensitivity (Se), Positive Predictivity (PP) and Specificity (SP).   


2021 ◽  
Author(s):  
Muhammad Zubair

<div><div><div><p>Electrocardiogram (ECG) is the graphical portrayal of heart usefulness. The ECG signals holds its significance in the discovery of heart irregularities. These ECG signals are frequently tainted by antiques from various sources. It is basic to diminish these curios and improve the exactness just as dependability to show signs of improvement results identified with heart usefulness. The most commonly disturbed artifact in ECG signals is Motion Artifacts (MA). In this paper, we have proposed a new concept on how machine learning algorithms can be used for de-noising the ECG signals. Towards the goal, a unique combination of Recurrent Neural Network (RNN) and Deep Neural Network (DNN) is used to efficiently remove MA. The proposed algorithm is validated using ECG records obtained from the MIT-BIH Arrhythmia Database. To eliminate MA using the proposed method, we have used Adam optimization algorithm to train and fit the contaminated ECG data in RNN and DNN models. Performance evaluation results in terms of SNR and RRMSE show that the proposed algorithm outperforms other existing MA removal methods without significantly distorting the morphologies of ECG signals.</p></div></div></div>


2021 ◽  
Author(s):  
Muhammad Zubair

<div><div><div><p>Electrocardiogram (ECG) is the graphical portrayal of heart usefulness. The ECG signals holds its significance in the discovery of heart irregularities. These ECG signals are frequently tainted by antiques from various sources. It is basic to diminish these curios and improve the exactness just as dependability to show signs of improvement results identified with heart usefulness. The most commonly disturbed artifact in ECG signals is Motion Artifacts (MA). In this paper, we have proposed a new concept on how machine learning algorithms can be used for de-noising the ECG signals. Towards the goal, a unique combination of Recurrent Neural Network (RNN) and Deep Neural Network (DNN) is used to efficiently remove MA. The proposed algorithm is validated using ECG records obtained from the MIT-BIH Arrhythmia Database. To eliminate MA using the proposed method, we have used Adam optimization algorithm to train and fit the contaminated ECG data in RNN and DNN models. Performance evaluation results in terms of SNR and RRMSE show that the proposed algorithm outperforms other existing MA removal methods without significantly distorting the morphologies of ECG signals.</p></div></div></div>


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 510
Author(s):  
Cheng-Yu Yeh ◽  
Hung-Yu Chang ◽  
Jiy-Yao Hu ◽  
Chun-Cheng Lin

A variety of feature extraction and classification approaches have been proposed using electrocardiogram (ECG) and ECG-derived signals for improving the performance of detecting apnea events and diagnosing patients with obstructive sleep apnea (OSA). The purpose of this study is to further evaluate whether the reduction of lower frequency P and T waves can increase the accuracy of the detection of apnea events. This study proposed filter bank decomposition to decompose the ECG signal into 15 subband signals, and a one-dimensional (1D) convolutional neural network (CNN) model independently cooperating with each subband to extract and classify the features of the given subband signal. One-minute ECG signals obtained from the MIT PhysioNet Apnea-ECG database were used to train the CNN models and test the accuracy of detecting apnea events for different subbands. The results show that the use of the newly selected subject-independent datasets can avoid the overestimation of the accuracy of the apnea event detection and can test the difference in the accuracy of different subbands. The frequency band of 31.25–37.5 Hz can achieve 100% per-recording accuracy with 85.8% per-minute accuracy using the newly selected subject-independent datasets and is recommended as a promising subband of ECG signals that can cooperate with the proposed 1D CNN model for the diagnosis of OSA.


2021 ◽  
Vol 11 (13) ◽  
pp. 6238
Author(s):  
Bishwajit Roy ◽  
Maheshwari Prasad Singh ◽  
Mosbeh R. Kaloop ◽  
Deepak Kumar ◽  
Jong-Wan Hu ◽  
...  

Rainfall-runoff (R-R) modelling is used to study the runoff generation of a catchment. The quantity or rate of change measure of the hydrological variable, called runoff, is important for environmental scientists to accomplish water-related planning and design. This paper proposes (i) an integrated model namely EO-ELM (an integration of equilibrium optimizer (EO) and extreme learning machine (ELM)) and (ii) a deep neural network (DNN) for one day-ahead R-R modelling. The proposed R-R models are validated at two different benchmark stations of the catchments, namely river Teifi at Glanteifi and river Fal at Tregony in the UK. Firstly, a partial autocorrelation function (PACF) is used for optimal number of lag inputs to deploy the proposed models. Six other well-known machine learning models, called ELM, kernel ELM (KELM), and particle swarm optimization-based ELM (PSO-ELM), support vector regression (SVR), artificial neural network (ANN) and gradient boosting machine (GBM) are utilized to validate the two proposed models in terms of prediction efficiency. Furthermore, to increase the performance of the proposed models, paper utilizes a discrete wavelet-based data pre-processing technique is applied in rainfall and runoff data. The performance of wavelet-based EO-ELM and DNN are compared with wavelet-based ELM (WELM), KELM (WKELM), PSO-ELM (WPSO-ELM), SVR (WSVR), ANN (WANN) and GBM (WGBM). An uncertainty analysis and two-tailed t-test are carried out to ensure the trustworthiness and efficacy of the proposed models. The experimental results for two different time series datasets show that the EO-ELM performs better in an optimal number of lags than the others. In the case of wavelet-based daily R-R modelling, proposed models performed better and showed robustness compared to other models used. Therefore, this paper shows the efficient applicability of EO-ELM and DNN in R-R modelling that may be used in the hydrological modelling field.


2021 ◽  
pp. 1-14
Author(s):  
Sachin Sharma ◽  
Vineet Kumar ◽  
K.P.S. Rana

Generally, the process industry is affected by unwanted fluctuations in control loops arising due to external interference, components with inherent nonlinearities or aggressively tuned controllers. These oscillations lead to production of substandard products and thus affect the overall profitability of a plant. Hence, timely detection of oscillations is desired for ensuring safety and profitability of the plant. In order to achieve this, a control loop oscillation detection and quantification algorithm using Prony method of infinite impulse response (IIR) filter design and deep neural network (DNN) has been presented in this work. Denominator polynomial coefficients of the obtained IIR filter using Prony method were used as the feature vector for DNN. Further, DNN is used to confirm the existence of oscillations in the process control loop data. Furthermore, amplitude and frequency of oscillations are also estimated with the help of cross-correlation values, computed between the original signal and estimated error signal. Experimental results confirm that the presented algorithm is capable of detecting the presence of single or multiple oscillations in the control loop data. The proposed algorithm is also able to estimate the frequency and amplitude of detected oscillations with high accuracy. The Proposed method is also compared with support vector machine (SVM) and empirical mode decomposition (EMD) based approach and it is found that proposed method is faster and more accurate than the later.


2015 ◽  
Vol 13 (2) ◽  
pp. 50-58
Author(s):  
R. Khadim ◽  
R. El Ayachi ◽  
Mohamed Fakir

This paper focuses on the recognition of 3D objects using 2D attributes. In order to increase the recognition rate, the present an hybridization of three approaches to calculate the attributes of color image, this hybridization based on the combination of Zernike moments, Gist descriptors and color descriptor (statistical moments). In the classification phase, three methods are adopted: Neural Network (NN), Support Vector Machine (SVM), and k-nearest neighbor (KNN). The database COIL-100 is used in the experimental results.


Sign in / Sign up

Export Citation Format

Share Document