The Location and Incidence of Patent Accessory Pulpal Canals in Permanent Molars with Periodontal Lesion by Using Micro-Computed Tomography

2021 ◽  
Vol 11 (1) ◽  
pp. 85-88
Author(s):  
Dima Chouchi ◽  
Atilla Berberoğlu ◽  
Kaan Orhan ◽  
Ilker Etikan ◽  
Hayriye Tümer ◽  
...  

Objective: In this study, the event of patent accessory pulpal canals situated in periodontal pockets has been resolved to utilize the micro-CT method. Methods: Fifty-seven extracted permanent human teeth were utilized to examine the commonness, location, and diameter of the patent accessory canals that are opening outside toward the periodontal pocket by utilizing micro-CT and high-resolution desktop. Results: Through 57 molars 6 (10.25%) were accessible with patent accessory, canals inside furcation area, of root, 49 (85%) were accessible with patent accessory canals inside the mesial and distal buccal root, and 28 (49.1%) were accessible with patent accessory, canals inside the palatal/lingual root. A measurably critical variety was found alongside the nearness of patent accessory trench in various roots and pocket depth at a similar region of the nearness waterway just as the nearness of these canals and connection misfortune in this region. Conclusions: Progression of periodontal pocket might be responsible for opening accessory canal and cause pulp pathosis, making successful periodontal therapy difficult.

2021 ◽  
Author(s):  
Eva Chatzinikolaou ◽  
Kleoniki Keklikoglou

Micro-computed tomography (micro-CT) is a high-resolution 3D-imaging technique which is now increasingly applied in biological studies focusing on taxonomy and functional morphology. The creation of virtual representations of specimens can increase availability of otherwise underexploited and inaccessible samples. This protocol aims to standardise micro-CT scanning procedures for embryos and juveniles of the marine gastropod species Hexaplex trunculus.


2021 ◽  
Author(s):  
Elliott Goff ◽  
Federica Buccino ◽  
Chiara Bregoli ◽  
Jonathan P. McKinley ◽  
Basil Aeppli ◽  
...  

ABSTRACTUltra-high-resolution imaging of the osteocyte lacuno-canalicular network (LCN) three-dimensionally (3D) in a high-throughput fashion has greatly improved the morphological knowledge about the constituent structures – positioning them as potential biomarkers. Technologies such as serial focused ion beam/scanning electron microscopy (FIB/SEM) and confocal scanning laser microscopy (CLSM) can image in extremely high resolution, yet only capture a small number of lacunae. Synchrotron radiation computed tomography (SR-CT) can image with both high resolution and high throughput but has a limited availability. Desktop micro-computed tomography (micro-CT) provides an attractive balance: high-throughput imaging on the micron level without the restrictions of SR-CT availability. Over the past decade, desktop micro-CT has been used to image osteocyte lacunae in a variety of animals, yet few studies have employed it to image human lacunae using clinical biopsies.In this study, accuracy, precision, and sensitivity of large-scale quantification of human osteocyte lacunar morphometries were assessed by ultra-high-resolution desktop micro-computed tomography. For this purpose, thirty-one transiliac human bone biopsies containing trabecular and cortical regions were imaged using ultra-high-resolution desktop micro-CT at a nominal isotropic voxel resolution of 1.2µm. The resulting 3D images were segmented, component labeled, and the following morphometric parameters of 7.71 million lacunae were measured: Lacunar number (Lc.N), density (Lc.N/BV), porosity (Lc.TV/BV), volume (Lc.V), surface area (Lc.S), surface area to volume ratio (Lc.S/Lc.V), stretch (Lc.St), oblateness (Lc.Ob), sphericity (Lc.Sr), equancy (Lc.Eq), and angle (Lc.θ).Accuracy was quantified by comparing automated lacunar segmentation to manual segmentation. Mean true positive rate (TPR), false positive rate (FPR), and false negative rate (FNR) were 89.0%, 3.4%, and 11.0%, respectively. Regarding the reproducibility of lacunar morphometry from repeated measurements, precision errors were low (0.2 – 3.0%) and intraclass correlation coefficients were high (0.960 – 0.999). Significant differences between cortical and trabecular regions (p<0.001) existed for Lc.N/BV, Lc.TV/BV, local lacunar surface area (<Lc.S>), and local lacunar volume (<Lc.V>), all of which demonstrate the sensitivity of the method and are possible biomarker candidates. This study provides the rigorous foundation required for future large-scale morphometric studies using ultra-high-resolution desktop micro-CT and high-throughput analysis of millions of osteocyte lacunae in human bone samples. Furthermore, the validation of this technology for imaging of human lacunar properties establishes the quality and reliability required for the accurate, precise, and sensitive assessment of osteocyte morphometry in clinical bone biopsies.


2019 ◽  
Vol 9 (4) ◽  
pp. 204589401988361
Author(s):  
Yupu Deng ◽  
Katelynn J. Rowe ◽  
Ketul R. Chaudhary ◽  
Anli Yang ◽  
Shirley H.J. Mei ◽  
...  

Micro-computed tomography (micro-CT) is used in pre-clinical research to generate high-resolution three-dimensional (3D) images of organs and tissues. When combined with intravascular contrast agents, micro-CT can provide 3D visualization and quantification of vascular networks in many different organs. However, the lungs present a particular challenge for contrast perfusion due to the complexity and fragile nature of the lung microcirculation. The protocol described here has been optimized to achieve consistent lung perfusion of the microvasculature to vessels < 20 microns in both normal and pulmonary arterial hypertension rats. High-resolution 3D micro-CT imaging can be used to better visualize changes in 3D architecture of the lung microcirculation in pulmonary vascular disease and to assess the impact of therapeutic strategies on microvascular structure in animal models of pulmonary arterial hypertension.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
David Haberthür ◽  
Ruslan Hlushchuk ◽  
Thomas Gerhard Wolf

AbstractHigh-resolution micro-computed tomography is a powerful tool to analyze and visualize the internal morphology of human permanent teeth. It is increasingly used for investigation of epidemiological questions to provide the dentist with the necessary information required for successful endodontic treatment. The aim of the present paper was to propose an image processing method to automate parts of the work needed to fully describe the internal morphology of human permanent teeth. One hundred and four human teeth were scanned on a high-resolution micro-CT scanner using an automatic specimen changer. Python code in a Jupyter notebook was used to verify and process the scans, prepare the datasets for description of the internal morphology and to measure the apical region of the tooth. The presented method offers an easy, non-destructive, rapid and efficient approach to scan, check and preview tomographic datasets of a large number of teeth. It is a helpful tool for the detailed description and characterization of the internal morphology of human permanent teeth using automated segmentation by means of micro-CT with full reproducibility and high standardization.


2021 ◽  
Vol 11 (3) ◽  
pp. 891
Author(s):  
Taylor Flaherty ◽  
Maryam Tamaddon ◽  
Chaozong Liu

Osteochondral scaffold technology has emerged as a promising therapy for repairing osteochondral defects. Recent research suggests that seeding osteochondral scaffolds with bone marrow concentrate (BMC) may enhance tissue regeneration. To examine this hypothesis, this study examined subchondral bone regeneration in scaffolds with and without BMC. Ovine stifle condyle models were used for the in vivo study. Two scaffold systems (8 mm diameter and 10 mm thick) with and without BMC were implanted into the femoral condyle, and the tissues were retrieved after six months. The retrieved femoral condyles (with scaffold in) were examined using micro-computed tomography scans (micro-CT), and the micro-CT data were further analysed by ImageJ with respect to trabecular thickness, bone volume to total volume ratio (BV/TV) ratio, and degree of anisotropy of bone. Statistical analysis compared bone regeneration between scaffold groups and sub-set regions. These results were mostly insignificant (p < 0.05), with the exception of bone volume to total volume ratio when comparing scaffold composition and sub-set region. Additional trends in the data were observed. These results suggest that the scaffold composition and addition of BMC did not significantly affect bone regeneration in osteochondral defects after six months. However, this research provides data which may guide the development of future treatments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javier Alba-Tercedor ◽  
Wayne B. Hunter ◽  
Ignacio Alba-Alejandre

AbstractThe Asian citrus psyllid (ACP), Diaphorina citri, is a harmful pest of citrus trees that transmits Candidatus Liberibacter spp. which causes Huanglongbing (HLB) (citrus greening disease); this is considered to be the most serious bacterial disease of citrus plants. Here we detail an anatomical study of the external and internal anatomy (excluding the reproductive system) using micro-computed tomography (micro-CT). This is the first complete 3D micro-CT reconstruction of the anatomy of a psylloid insect and includes a 3D reconstruction of an adult feeding on a citrus leaf that can be used on mobile devices. Detailed rendered images and videos support first descriptions of coxal and scapus antennal glands and sexual differences in the internal anatomy (hindgut rectum, mesothoracic ganglion and brain). This represents a significant advance in our knowledge of ACP anatomy, and of psyllids in general. Together the images, videos and 3D model constitute a unique anatomical atlas and are useful tools for future research and as teaching aids.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Philipp S. Lienemann ◽  
Stéphanie Metzger ◽  
Anna-Sofia Kiveliö ◽  
Alain Blanc ◽  
Panagiota Papageorgiou ◽  
...  

Abstract Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.


Sign in / Sign up

Export Citation Format

Share Document